CASIA OpenIR  > 毕业生  > 博士学位论文
相似尺度图像融合
其他题名Image Fusion at Similar Scale
陈涛
学位类型工学博士
导师彭思龙
2005-04-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词图像融合 相似尺度 加权多尺度基本形式 能量最小化 多光谱图 像 全色图像 Image Fusion Similar Scale Weighted Multiscale Fundamental Form
摘要图像融合是指联合两个或两个以上的图像通过某种算法得到一幅更高质量的新图像。由于受物理条件的限制和成像环境的影响,单个传感器图像或者单幅图像往往不能提供人们所需要的足够多的信息。综合多个传感器图像的信息,可以增加图像信息的可靠性、鲁棒性,可以加大信息表达范围和能力,有利于图像的理解和场景解释。现在图像融合广泛地应用于遥感、医学影像、数字相机和军事国防等许多领域。多尺度融合算法在像素级图像融合中占有主导地位。但是,这些方法没有考虑到融合图像空间尺度的不一致性。这种尺度间的差异会导致融合结果出现较多的伪信息。考虑到所在尺度间的差异,本文首次提出了一种融合思想,即图像应在相似尺度上进行融合,大大提高了低分辨率多光谱图像和高分辨率全色图像的融合效果。基于相似尺度思想,本文提出了一种基于加权多尺度基本形式的相似尺度图像融合算法。先对全色图像进行“à trous”离散小波变换,使其低通与多光谱图像具有相似的尺度;然后基于加权多尺度基本形式融合光谱图像和全色图像低通;最后利用逆“à trous”小波变换重建融合结果。基于相似尺度思想,本文还提出了基于变分法的图像融合算法。此算法通过最小化能量泛函得到融合结果。能量泛函主要由两个部分组成:一是高频能量,它在多尺度意义上优化了融合结果的细节信息;二是低频能量,它使多光谱图像和全色图像在相似尺度空间进行融合。此外,可以在能量中加入有关融合结果的先验知识,从而进一步改善融合结果。本论文还包括如下内容:提出了加权多尺度基本形式,并将其应用于图像融合、图像增强、各向异性扩散和彩色图像复原;初步比较了经验模式分解与小波变换在图像融合中的应用;通过模糊积融合污染IC图像和目标图像来实现污染区域的修复。
其他摘要Image fusion is the combination of two or more images to obtain a new image of better quality using a certain algorithm. Due to physical or observational constraints, single sensor or single image can't afford enough information. By the synthesization of multisensor image, the obtained information is more reliable and robust and the range and the ability of information is expanded. So image fusion benefits image understanding and scene interpretation. Image fusion is now extensively applied to many areas, such as remote sensing, medical imaging, digital camera, defense and military, and so on.Multiscale image fusion algorithm plays an important role in the image fusion algorithm at pixel level. However, these methods don't recognize the difference of image scales at the scale space. The difference will lead to more artificial information in the fused result. Considering the difference in image scales, an image fusion idea is first proposed that image fusion should performed at similar scale. The idea improves the combination of low resolution multispectral image and high resolution panchromatic image.According to the idea of similar scale, an image fusion algorithm based weighted multiscale fundamental form at similar scale is proposed. Firstly, we use the "à trous" discrete wavelet transform to decompose the panchromatic image so that its approximation and the interpolated multispectral image have the similar scale. Secondly, image fusion based on weighted multiscale fundamental form is performed on them to obtain the synthesized approximation. At last, the inverse "à trous" wavelet transform of the synthesized approximation and the detail of the panchromatic image reconstructs a high spatial resolution multispectral image.Another image fusion algorithm at similar scale is proposed using a variational approach. The algorithm performs image fusion through energy minimization. The energy functional mainly consists of two components. One ensures the injection of more correlated detail spatial information. The other ensures the preservation of the spectral information. It is used to preserve the spectral information that a lowpass approximation of the enhanced multispectral image at a determined level and the multispectral image to be fused should have the similar scale. Additionally, prior knowledge about the high spatial resolution multispectral image and other constraints can also add to the energy.Additionally, this thesis also makes the following contributions: weighted multiscale fundamental form is proposed and is applied to image fusion, image enhancement, anisotropic diffusion and color image restoration; the performances of empirical mode decomposition and wavelet decomposition in the field of image fusion is compared; the combination of spotted IC image and the object image using the fuzzy integral is used to restore the spotted region.
馆藏号XWLW894
其他标识符200218014603194
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5840
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
陈涛. 相似尺度图像融合[D]. 中国科学院自动化研究所. 中国科学院研究生院,2005.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2002_陈涛_博士论文_5536_1.(15404KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈涛]的文章
百度学术
百度学术中相似的文章
[陈涛]的文章
必应学术
必应学术中相似的文章
[陈涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。