CASIA OpenIR  > 毕业生  > 博士学位论文
虹膜图像特征表达方法研究
其他题名A Study on Iris Feature Representation
孙哲南
学位类型工学博士
导师谭铁牛
2006-01-23
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词生物特征识别 虹膜识别 掌纹识别 特征表达 排序测度特征 Biometrics Iris Recognition Palmprint Recognition Feature Representation Ordinal Measures
摘要虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,它在海关、银行、网络、公安、社保等领域都有广泛的用途,属于面向国家安全重大需求的战略高技术。在虹膜识别系统中,对蕴藏在虹膜图像数据中的特征信息的有效表达是决定系统性能指标的关键因素。虽然这方面的研究工作较多,但是没有形成系统和完整的理论框架。本文围绕着虹膜图像的特征表达问题,开展了下述研究工作: 1)利用虹膜纹理呈径向发射状分布的规律信息,本文提出用傅立叶频谱能量的分布特征来区分清晰的虹膜图像和模糊的虹膜图像(包括离焦模糊和运动模糊)。 2)受生物视觉认知规律的启发,用排序测度特征建立了虹膜图像特征表达的一般框架,证明了虹膜图像区域之间的排序测度特征等价于虹膜物理表面不同位置反光率之间的大小顺序关系,是独立于光照、对比度等外界因素的虹膜图像的本质特征。用一般框架统一了虹膜识别领域性能最好的一些算法,证明这些图像特征表达方法可以看成是排序测度特征的特例。在这个框架下,虹膜特征抽取甚至可以简化成简单的加减运算,解决了虹膜识别从PC向嵌入式平台移植的计算复杂性难题。 3)提出了新颖的多极子滤波器来提取虹膜图像中的非邻域排序测度特征,提高了虹膜特征的信息量和鲁棒性,突破了现有方法局限于相邻区域定性比对的性能瓶颈,同时取得了更高的识别率和更快的计算速度。 4)提出了结合方向扩散和方向滤波的鲁棒方向估计算子,提取虹膜图像梯度向量场的鲁棒方向特征用于虹膜识别。 5)把虹膜图像表达成图模式,将图像块作为节点,将图像块的Local Binary Pattern直方图作为节点的属性。提出了快速图匹配算法来度量两幅虹膜图像的相似性。 6)通过小波变换过零点检测的方法从虹膜图像中分割出特征斑块,将每个斑块的重心作为控制点,将斑块的几何矩作为每个点的属性,采用类似于指纹细节点串匹配的方法来校准两幅虹膜图像中的斑块集合,用匹配斑块对的比例作为匹配分数。提出了用级联分类器融合不同类型的虹膜特征,以较小的计算代价显著提高了系统的识别精度。 7)将排序测度特征成功推广到掌纹和人脸识别。建立了掌纹图像特征表达的一般框架,统一了该领域识别性能最好的三种掌纹识别方法,并提出了新颖的十字架形微分滤波器来抽取掌纹图像中的排序测度特征,取得了比主流方法更快更准的识别效果。通过AdaBoost机器学习方法,从人脸图像中自动选择了最优的排序测度特征组合用于人脸识别,取得了优异的识别性能。
其他摘要Iris recognition is a novel method for personal identification based on the similarity between the features of two iris images, which is a mission-critical technology, having many applications in customs, banking, network, public security, welfare distribution, etc. In iris recognition systems, how to represent the feature information embedded in an iris pattern is a key factor to the system’s performance. Although a number of methods have been proposed for iris representation, a general systematic framework has not been established. In this thesis, we attempt to address this issue. Our contributions include: 1)Based on the fact that the iris texture is radially distributed, we propose to use the spatial distribution of Fourier frequency energy for iris image quality assessment. Both defocused and motion blurred iris images can be recognized and excluded. 2)Inspired by the biological system’s response function to visual signal, we propose a general framework of iris feature representation based on ordinal measures. 3)A novel dissociated multi-pole filter is developed to extract the non-local ordinal measures of iris images. This method improves the information contents and robustness of iris features and breaks the bottleneck of the state-of-the-art iris recognition methods because they are based on only local ordinal measures. Based on the novel method, we achieve higher accuracy and lower computational costs simultaneously. 4)A novel robust direction estimator is proposed based on directional diffusion and directional filtering, to extract the robust directional features of gradient vector field of iris images for iris recognition. 5)We represent iris images using graphs, i.e. regarding the image blocks as nodes and the histogram of local binary pattern as the attributes of the nodes. And a fast graph matching algorithm is proposed to measure the similarity between two iris images. 6)Based on the zero-crossings of wavelet transform, we segment iris images into blob regions. We regard the centers of the blobs as the control points and their moments as the associated attributes. Then a string matching algorithm used in fingerprint minutiae matching is exploited to align two blob patterns and the number of matched blob pairs is used to measure their similarity. We propose a cascased classifier to integrate different iris recognition methods, which improves iris recognition accuray with little extra computational cost. 7)The ordinal measures based iris feature representation model is successfully extended to palmprint and face recognition.
馆藏号XWLW967
其他标识符200218014603220
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5890
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
孙哲南. 虹膜图像特征表达方法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20021801460322(6694KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙哲南]的文章
百度学术
百度学术中相似的文章
[孙哲南]的文章
必应学术
必应学术中相似的文章
[孙哲南]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。