CASIA OpenIR  > 毕业生  > 博士学位论文
基于功能磁共振成像的脑功能网络分析及在精神分裂症中的应用
其他题名Brain Functional Network Analysis and Its Applications in Schizophrenia with Functional MRI
梁猛
学位类型工学博士
导师蒋田仔
2006-05-28
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词功能磁共振 功能连接 脑功能网络 静息状态 精神分裂症 Functional Mri Functional Connectivity Brain Functional Network Resting State Schizophrenia
摘要脑的功能具有两个基本的组织原则:功能分化与功能整合。人脑总是作为一个网络来完成其功能的。因此,从网络的角度来研究人脑的功能无疑是非常必要的。此外,越来越多的研究已经表明精神分裂症可能源于脑区之间功能整合不良。本文旨在利用静息状态功能磁共振成像技术,从脑功能网络的角度来研究人脑的功能,在一定程度上揭示人脑在静息状态下脑功能网络的组织模式,考察在精神分裂症的病理条件下脑功能网络的异常,从而加深对精神分裂症病理机制的理解和认识。本文的工作主要体现在以下几个方面: 1.针对目前精神分裂症研究中非常流行的失连接假说,利用功能磁共振成像技术,首次从全脑功能连接的角度考察了静息状态下精神分裂症患者的脑区间功能连接的异常。研究结果表明:静息状态下精神分裂症患者主要表现为功能连接的降低,而且这些降低的功能连接广泛分布于全脑范围内而非局限于某几个特定的区域。这一研究结果支持了精神分裂症可能源于广泛分布的脑区之间的功能整合不良,即功能失连接假说。 2.在基于fMRI的脑网络分析中首次引入了一种基于信息论的方法来构建复杂脑功能网络,考察了健康被试与精神分裂症患者的静息状态脑功能网络的小世界属性。研究结果表明:健康被试的静息状态脑功能网络具有显著的小世界属性,此外,与健康被试相比,精神分裂症患者的静息状态脑功能网络的小世界属性明显下降。这一研究不仅进一步支持了以往研究关于正常人脑功能网络具有小世界属性的发现,而且也首次暗示了精神分裂症患者的脑功能网络的全局组织结构(即小世界属性)出现紊乱。 3.利用基于静息状态fMRI的功能连接分析,提取并验证了健康被试和精神分裂症患者静息状态下脑固有网络的存在,并考察了脑固有网络中各个脑区的连接度和各条连接在精神分裂症患者中是否存在异常。研究结果发现静息状态下脑固有网络在精神分裂症中表现出异常,暗示了精神分裂症患者的固有脑功能组织模式可能出现紊乱。
其他摘要Functional segregation and functional integration are two major organizational principles of the human brain functions. The brain always functions as an integrative network. Therefore, it is necessary to explore the human brain from a view of network. Furthermore, more and more studies have indicated that schizophrenia may result from the improper functional integration among brain regions. The aims of the dissertation are to investigate the human brain functional network by using resting-state functional magnetic resonance imaging (fMRI), and to explore the alterations of the brain functional network under the pathophysiology of schizophrenia. The main contents and contributions of the dissertation are as follows: 1.Using resting-state fMRI, we examined the abnormalities of functional connectivities throughout the entire brain during rest in schizophrenia for the first time. The results indicated, in general, a decreased functional connectivity in schizophrenia during rest, and such abnormalities were widely distributed throughout the entire brain rather than restricted to a few specific brain regions. This study provides a quantitative support for the hypothesis that schizophrenia may arise from the disrupted functional integration of widespread brain areas. 2.We introduced an information-theoretic based method to construct the resting brain functional networks in healthy subjects and schizophrenic patients using fMRI, and then analyzed the small-world properties of the functional brain networks of the two groups. The results showed that the healthy brain functional network demonstrated salient small-world topology, which was obviously decreased in the patients’ brain network. Our study further supported the previous findings of small-world topology of healthy brain networks, and more importantly, our results of the decreased small world property in schizophrenia suggested that the organization of the brain functional network was disrupted under the pathophysiology of schizophrenia. 3.Using the analysis of functional connectivity, we identified the intrinsic networks of human brains in normal subjects and schizophrenic patients during rest, and explored whether the intrinsic networks (including the degree of regions and the strength of connections) were altered in schizophrenia. The results indicated that the intrinsic networks were abnormal in schizophrenia during rest, and suggested that the intrinsic organization of the brain function was disrupted in schizophrenia.
馆藏号XWLW995
其他标识符200318014603014
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5915
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
梁猛. 基于功能磁共振成像的脑功能网络分析及在精神分裂症中的应用[D]. 中国科学院自动化研究所. 中国科学院研究生院,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20031801460301(842KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[梁猛]的文章
百度学术
百度学术中相似的文章
[梁猛]的文章
必应学术
必应学术中相似的文章
[梁猛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。