CASIA OpenIR  > 毕业生  > 博士学位论文
焊缝图像处理与焊接机器人视觉控制研究
其他题名RESEARCH ON IMAGES PROCESSING OF SEAMS AND WELDING ROBOT VISUAL CONTROL
李原
学位类型工学博士
导师谭民 ; 徐德
2006-06-02
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词焊接机器人 焊缝跟踪 结构光视觉 图像处理 特征提取 Welding Robot Seam Tracking Structured Light Vision Image Processing Features Extraction
摘要机器人具有精度高、可靠性和稳定性好等优点,能够提高焊接生产的自动化水平,改善工人的劳动条件,在焊接领域得到了广泛的应用。目前焊接机器人的工作方式以示教-再现为主,这种方式缺乏适应性,待焊工件的定位误差以及焊接过程中工件的热变形都会导致焊枪偏离焊缝,影响焊接质量。焊接生产对焊接机器人的适应能力提出了更高的要求,需要机器人能够感知工件焊缝的位置信息,对焊接路径进行实时纠偏控制,即焊缝跟踪问题。 基于视觉传感技术的焊缝跟踪机器人控制研究,具有广阔的应用前景和重要意义。本文针对焊缝结构光图像处理与焊缝特征的识别提取以及焊接机器人的视觉控制开展了研究工作。 第一,研究了机器人视觉传感器和视觉测量系统的设计与实现。在分析了光滑工件表面光照反射机制,以及结构光视觉传感器中各个部件的角度位置关系对焊缝图像成像影响的基础上,设计了焊缝跟踪视觉传感器,有效减少了视觉系统中工件表面激光反光和点弧光等干扰。实现了视觉测量系统与机器人控制系统的集成。 第二,研究了工件表面存在反光等强干扰条件下,焊缝激光结构光图像的处理和焊缝条纹中心线的提取问题。提出了基于图像列方向像素灰度分布的多峰检测算法,判断并提取出焊缝条纹中心线,对于光滑工件表面的激光反光干扰具有较好的鲁棒性。 第三,提出一种基于模型匹配方法,对各种焊缝接头类型进行自动判定、识别。采用Hausdorff距离度量焊缝接头激光条纹形状与标准模板的匹配程度。通过对图形标准化变换,降低了图形匹配搜索空间的维数,提高了模板匹配的搜索速度。 第四,根据焊缝结构光条纹图像特点,选择图像形状特征作为焊缝特征提取。把焊接生产中常见的典型焊缝接头类型分为三种: 坡口对接类、无坡口直接对接类和搭接类焊缝,分别提出了相应的特征提取算法。 第五,采用结构光视觉方法实现对工件圆孔的定位与测量。通过提取结构光圆孔图像中十字激光条纹的圆孔边缘特征点,对圆孔轮廓进行了拟合,从而确定圆孔参数。 第六,研究了管道焊接机器人视觉焊缝跟踪控制问题。在分析了一种五自由度焊接机器人的视觉控制的基础上,提出了一种管道焊接机器人简化视觉控制方法,实现了基于图像的无标定焊缝跟踪视觉控制。焊缝跟踪实验结果验证了视觉控制系统的有效性。 最后,本文对所取得的研究成果进行了总结,并指出了进一步工作的方向。
其他摘要Welding robots have been widely applied in welding industry to improve the automation level of welding production and the labor condition of workers because of precision, reliability and stability. Welding robots mainly work in teaching-and-playing mode nowadays, which lack adaptability for welding condition. In process of welding, the torch mounted on welding robots often deviate from the seams because of the error in positioning and the warp and distortion caused by thermal expansion, which deteriorates the quality of welding seams. Welding robots are expected more adaptability for the complexity of welding production to detect the seam position of work pieces and rectify the deviation to realize seam tracking. Research on automatic welding robots based on vision sensor has widely promising applications and significance. In this dissertation, the structured light image processing, features extraction and vision control of welding robot are studied. Firstly, robot vision sensor and vision measure system are designed based on the analysis of laser reflection on smooth surface and the imaging effect of the position and pose relationship of the camera, laser plane and work pieces. Secondly, structured light images processing and the extraction of laser stripes are researched in the case of disturbances of strong reflection. . Thirdly, a recognition method of joint type is proposed based on model matching. Hausdorff distance is adopted to measure matching degree between joint stripes and standard models. Fourthly, the shape feature is selected as one of image features. The welding joint types are divided into three typical categories: groove with slopes, butt joints, and lap joints; and the features extraction algorithms are developed respectively. Fifthly, structured light vision method is applied to aperture measurement and positioning. Sixthly, seam tracking vision control of pipe welding robot is studied. A vision control method of pipe welding robot is proposed based on analysis of vision control of welding robot with five freedom degree, and the seam tracking vision control based on images without calibration is realized. Finally, the obtained research results of dissertation are summarized and future work is addressed.
馆藏号XWLW1008
其他标识符200318014602977
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5928
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
李原. 焊缝图像处理与焊接机器人视觉控制研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20031801460297(4968KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李原]的文章
百度学术
百度学术中相似的文章
[李原]的文章
必应学术
必应学术中相似的文章
[李原]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。