CASIA OpenIR  > 毕业生  > 博士学位论文
基于离散微分几何的数字几何处理研究
其他题名Digital Geometry Processing based on Discrete Differential Geometry
吴怀宇
学位类型工学博士
导师马颂德
2008-05-26
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词数字几何处理 离散微分几何 网格编辑 网格光顺 交叉参数化 网格分割 基于笔划的交互式技术 模型转导 Digital Geometry Processing Discrete Differential Geometry Mesh Editing Mesh Fairing Cross-parameterization Mesh Segmentation Sketch-based Interactive Techniques Model Transduction
摘要多媒体革命性的进展已经经历了三代:声音,图像和视频。而九十年中后期发展起来数字几何处理(DGP: Digital Geometry Processing)是一个年轻而活跃的研究领域。其研究目标是为了新一代的多媒体数据:三维网格模型,提供理论基础和应用指导。不同于之前的数据类型,我们并不能直接使用已有的理论和算法工具,因为几何数据有其内在的(intrinsic)特点,比如拓扑结构、曲率性质和非均匀采样使得大部分传统工具无法直接用以满足处理要求。 针对数字几何处理中的主要问题,如交叉参数化(一致对应)、网格形变编辑与动画、网格分割、网格平滑与去噪、3D数据重定向技术等等,在本文中我们提出基于离散微分几何的处理框架来对3D网格模型进行有效而快捷的操作。本文的主要贡献如下:  提出了一种新的重定向方法,模型转导,来直接转递不同网格之间的姿态,而无需对网格建立骨架结构。不同于以前的重定向方法,比如形变传递,模型转导无需使用参考源网格来获得源形变,这样有效避免了当源和目标具有不同的参考姿态时所产生的不满意结果。此外,我们揭示转导方法也可被用于各种网格编辑操作之后的姿态修正。  提出一种用于在任意流形曲面之间建立形状保持的(Shape-preserving)一致对应框架。不同于绝大多数已有的方法,我们的方法直接将源网格的拓扑连接映射到目标网格,而无需对输入网格进行分割,这样有效避免了处理各种不稳定的情况,如复杂边界或高亏格。  提出了一种用于实时分割3D网格的笔划式交互框架。通过使用这种易于使用的交互方式,用户可以随意地分割一个3D网格而无须太多努力或技巧。为了有意义地分割一个模型,我们提出了两个特征感知尺度,其独立于模型的大小和部件尺寸。这些尺度具有清晰的物理意义且反映了离散微分几何特征,比如曲率张量和高斯像的曲线长度。  提出了一种新的在3D网格之间建立形状保持交叉参数化的分而治之的方法。首先,我们使用前面所提出的便捷工具来生成有意义的网格分割,作为交叉参数化的前期准备。然后,我们对分割后网格的每一个部件构建凸包(convex hull),并使用我们的凸包交叉参数化方法来生成兼容网格。我们的方法利用了凸包的优良属性,如好的逼近能力和对内部点的线性凸表征能力。  提出了均值流形操作符来构建新的网格处理框架。均值流形操作符是定义在流形网格(包括细节丰富和形状极不规则的网格)上的形状保持操作符,并用于各种网格处理,如网格编辑,网格光顺,交叉参数化、模型转导等。具体地,基于该线性操作符,我们的网格形变编辑方法即使在大角度旋转或大尺度平移时也能产生满意的形变结果。此外,我们的网格光顺方法对各种不同的模型执行形状保持的平滑操作。我们的各种网格处理方法完美地统一在相同的框架中,在各个阶段都执行相似类型的线性操作,并可通过快速计算稀疏线性系统来求解。
其他摘要The multimedia revolution has encompassed three types of data so far: sound, image, and video. Digital Geometry Processing (DGP) is an entirely new and much needed research area. Its goal is the research of mathematical and computational foundations needed for the next wave of multimedia data: geometry. Unlike previous data types, we cannot rely on existing theoretical and algorithmic tools since geometric data has intrinsic properties, such as topology, curvature, and non-uniform sampling that render most traditional tools useless. We develop new methods for efficient, reliable and scalable tools for cross-parameterization (consistent correspondence), mesh deformation and editing, mesh segmentation, mesh faring and many other types of DGP operations. This provides a complete mesh processing pipeline to allow for easy and efficient manipulation of 3D mesh models. The main contributions of this thesis include following issues:  We proposes a novel retargetting method, called model transduction, to directly transfer pose between different meshes, without the need of building the skeleton configurations for meshes. Different from previous retargetting methods, such as deformation transfer, model transduction does not require a reference source mesh to obtain source deformation, thus effectively avoids unsatisfying results. Moreover, we show that the transduction method also can be used for pose correction after various mesh editing operations.  We propose a novel framework for consistent correspondence between arbitrary manifold meshes. Different from most existing methods, our approach directly maps the connectivity of the source mesh onto the target mesh without needing to segment input meshes, thus effectively avoids dealing with unstable extreme conditions (e.g. complex boundaries or high genus).  We propose a sketch-based interactive framework for real-time mesh segmentation. With an easy-to-use tool, the user can freely segment a 3D mesh while needing little effort or skill. In order to meaningfully segment the mesh, two dimensionless feature sensitive metrics are proposed, which are independent of the model and part size. We show that these metrics give the clear physical meaning to illustrate discrete differential geometric features, such as the curvature tensor and the curve length of gaussian image.  We propose a novel scheme for shape-preserving "divide and rule" cross-parameterization between 3D meshes. Our scheme exploits the excellent properties of convex hull, e.g. good approximating ability and linear convex representation for interior vertices.  Based on the novel mean-value manifold operator, we present a general framework for performing mesh processing tasks. The mean-value manifold operator is a shape-preserving operator defined on manifold meshes, and furnishes a variety of processing applications, such as mesh editing, mesh fairing, cross-parameterization and model transduction.
馆藏号XWLW1187
其他标识符200418014628031
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6074
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
吴怀宇. 基于离散微分几何的数字几何处理研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20041801462803(8065KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[吴怀宇]的文章
百度学术
百度学术中相似的文章
[吴怀宇]的文章
必应学术
必应学术中相似的文章
[吴怀宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。