CASIA OpenIR  > 毕业生  > 博士学位论文
基于人工神经元网络的非线性模型预测控制方法研究
其他题名Studies on Nonlinear Model Predictive Control Based on Artificial Neural Network
李会军
学位类型工学博士
导师王宏 ; 马增良
2008-05-27
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词模型预测控制 Narmax模型 Bp神经网络 Narx神经网络 二次规划算法 序列二次规划算法 遗传算法 Model Predictive Control Narmax Model Bp Neural Network Narx Neural Network Quadratic Programming Algorithm Sequential Quadratic Programming Algorithm Genetic Algorithm
摘要模型预测控制方法是控制理论与计算机技术相结合而产生的一种新型控制策略。传统的模型预测控制方法使用的预测模型都是系统的线性预测模型,不能直接应用于具有强非线性的工业过程中。如何将非线性系统建模理论、非线性优化理论和模型预测控制的思想结合起来,设计基于非线性预测模型的预测控制方法成了工业控制领域研究的重要内容。 本文致力于“基于人工神经元网络的非线性模型预测控制方法的研究”,旨在将人工神经元网络理论和非线性优化理论应用于模型预测控制中,形成一套新的解决非线性控制问题的思路与办法。本文的主要研究工作与贡献如下: (1)、系统介绍了模型预测控制理论、系统辨识理论、人工神经元网络理论和非线性优化理论的基本原理和典型算法,为论文后续章节的研究工作奠定了理论基础。 (2)、以NARMAX模型的数学表达形式为基础,推导出了基于BP神经网络的非线性一步预测模型。使用牛顿迭代算法设计了无约束一步预测控制律,使用二次规划算法设计了带约束一步预测控制律。通过计算机仿真研究,验证了基于BP神经网络一步预测模型的预测性能和设计的预测控制律的控制性能。 (3)、通过递归调用两层BP神经网络,构造了一个基于两层BP神经网络的非线性多步预测模型。使用Newton – Rhapson 算法设计了无约束多步预测控制律。使用SQP算法和遗传算法设计了带约束多步预测控制律。通过计算机仿真研究,验证了基于BP神经网络的多步预测模型的预测性能和设计的预测控制律的控制性能。 (4)、通过比较基于BP神经网络的多步预测模型和静态部分为两层BP网络的NARX神经网络的结构形式,提出了基于NARX神经网络的多步预测模型,克服了基于BP神经网络的多步预测模型预测误差累积现象。根据两种多步预测模型的结构等价性,将基于BP神经网络多步预测模型的预测控制律移植到了基于NARX神经网络的多步预测模型之上。通过计算机仿真研究,验证了基于NARX神经网络的多步预测模型的预测性能和设计的预测控制律的控制性能。 (5)、为了便于先进控制算法的实验室测试和工程化实施,设计并实现了先进控制平台,简要介绍了先进控制平台的系统架构和主要接口描述,展示了先进控制平台的系统主界面。
其他摘要MPC (Model Predictive Control) is an important control strategy based on control theory and computer technology. The classic MPC use linear model as their predictive model, and are therefore not generally suitable for the industry processes which are subjected to strong nonlinearities. It is very important to study new ways so as to combine nonlinear system model theory, nonlinear optimization theory and model predictive control theory and to design nonlinear model predictive control algorithms for industrial processes. This PhD thesis presents novel studies on nonlinear model predictive control method based on artificial neural network, where the research objective is to apply artificial neural network theory and nonlinear optimization theory to the design of model predictive control so as to establish novel techniques to deal with nonlinear control problems. The main study and contributions are as follows: (1) The basic principles and typical algorithms of model predictive control theory, system identification theory, artificial neural network theory and nonlinear optimization theory are systematically reviewed. These are the foundation of the follow-up chapters of the thesis. (2) The nonlinear one-step predictive model based on a BP neural network was derived according to the mathematics expression of NARMAX model. Then the one-step predictive control rule without constraints was firstly designed by using Newton iterative algorithm. This is followed by the development of a one-step predictive control rule with constraints using quadratic programming algorithm. The capability of one–step predictive model based on BP neural network and the performance of the one-step predictive control rules were validated through some computer simulations. (3) The nonlinear multi-step predictive model based on a two-layer BP neural network was derived through iterative calling the two-layer BP neural network. Then the multi-step predictive control rule without constraints was designed by using Newton–Rhapson algorithm. The multi-step predictive control rules with constraints were then designed by using sequential quadratic programming algorithm and genetic algorithm, respectively. The capability of multi–step predictive model based on two-layer BP neural network and the performance of the multi-step predictive control rules were validated through the computer simulations.
馆藏号XWLW1208
其他标识符200518014628022
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6077
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
李会军. 基于人工神经元网络的非线性模型预测控制方法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20051801462802(684KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李会军]的文章
百度学术
百度学术中相似的文章
[李会军]的文章
必应学术
必应学术中相似的文章
[李会军]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。