CASIA OpenIR  > 毕业生  > 博士学位论文
基于视觉的手势识别方法研究
其他题名Vision-Based Hand Gesture Recognition
方亦凯
学位类型工学博士
导师卢汉清
2008-06-02
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词手势识别 手势检测 手势跟踪 人机交互 Gesture Recognition Gesture Detection Hand Tracking Human Computer Interaction
摘要随着计算机性能的逐步提高和各领域对计算机使用的不断深入,人与计算机的交互活动越来越成为人们日常生活中的一个重要组成部分。鼠标和键盘等传统的的人机交互方式越来越显示出它们的局限性,尤其在虚拟现实、增强现实和可穿戴计算等新兴的应用中变得更为明显。近年来,手势交互作为一种新的人机交互方式被越来越多地采用,特别是基于视觉的手势交互,由于其简单、自然、直观和非侵犯性等特性已成为手势交互的重要方式之一。本文围绕基于视觉的手势识别中的识别,跟踪和交互系统实现等关键问题开展了深入的研究工作,所取得的主要研究成果如下: (1) 提出了一种快速的尺度空间特征检测方法。传统的尺度空间特征检测方法由于涉及到大量的高斯卷积,计算比较复杂,限制了这种方法在手势识别中的应用。本文使用积分图近似计算高斯导数卷积,采用一组简单的矩形特征模板近似传统的尺度空间特征检测中复杂的高斯导数卷积模板,得到了尺度空间几何特征的快速检测子和描述子。使用这种快速检测方法,对手势图像中的Blob和Ridge结构进行检测,得到对手掌和手指结构的描述,进而完成基于二维几何模型的手势识别。使用矩形特征模板代替高斯导数极大地降低了计算复杂度,使尺度空间特征检测的速度提高了一倍。在标准数据集和自然环境图像数据上的实验结果表明,该方法在保证识别准确率的同时,有效的提高了手势识别的实时性。 (2) 应用基于多核协作跟踪的策略,解决了手势跟踪问题。将手势的运动分解为手掌和指尖等子目标的运动,使用基于平方和距离和背景加权直方图的核方法对手掌和指尖分别进行跟踪。为获得鲁棒的跟踪效果,将手势本身的自然约束|指尖到手掌中心的距离加入到跟踪中,维持了多个子目标间的位置关系。在测试序列上的跟踪结果表明,基于平方和距离的多核协作跟踪方法获得了准确的跟踪结果。 (3) 将半监督学习和多视角学习技术引入到手势识别中,提出了一种基于协同训练(Co-Training)学习策略的手势识别算法。在一个较小的标注样本集上,使用Haar特征和HoG特征分别训练不同的手势分类器。在迭代训练过程中,每个分类器单独对未标注样本进行分类,并把置信度较高的分类结果推荐给对方作为训练样本,从而使两个分类器在训练中互相促进,提高识别率。基于协同训练的方法利用了不同特征描述能力的互补性,在一个半监督学习的框架中提高了分类器的性能。 (4) 设计并实现了一个集成了手势检测、手部跟踪和手势识别的实时手势交互的图像浏览界面,能够识别用于图像浏览的六种手势。在手势处理中,首先使用基于Adaboost和扩展矩形特征的手势检测。在检测到指定的手势后,建立特定人的手部肤色模型,并使用综合了局部特征和特定肤色模型的方法进行手部的跟踪。在跟踪的过程中使用颜色和运动信息完成手部区域的提取,并在手势区域内应用快速尺度空间特征检测完成手势的识别。最后,使用手势识别的结果驱动图像浏览界面中的光标移动和打开/关闭预览等操作,取得了很好的效果。
其他摘要With the development of computing technology, computers have been widely used in our daily life. As a bridge between human and computer, HCI (Human Computer Interaction) has become a very important component of computer application. The traditional approaches of HCI, such as mouse, keyboard, and pen, are too cumbersome to maximally exploit the power of computers in some emerging applications such as virtual reality, augmented reality and wearable computing etc. Recently, hand gesture interaction, as a promising approach, attracts more and more attention. Especially, vision based hand gesture interaction has become the mainstream due to its simplicity, intuitiveness, and unintrusiveness. In this dissertation, our research mainly focus on some issues on hand posture recognition, hand tracking, classifiers improvement for hand posture and the applications of gesture interaction etc. In the above fields, the major achievements and contributions are summarized as following: (1) A fast scale-space feature detection method is proposed. A set of simple rectangular feature templates are used to approximate Gaussian derivative convolution templates in traditional scale-space feature detection and the fast detectors and descriptors for scale-space geometric shape features are obtained. With the approximation by rectangular feature templates, the computational complexity is greatly reduced. Experiments on standard dataset and the natural scene dataset show that the proposed method significantly reduces time cost of gesture recognition while keeping comparable accuracy with traditional method. (2) The strategy of multiple collaborative kernels is introduced into hand tracking. The motion of hand gesture is decomposed into motion of sub-targets such as palm and fingers. Kernel tracking with SSD and background weighted histogram is employed to the tracking of each sub-target. (3) A hand posture recognition method with co-training strategy is proposed. Semi-supervised and multi-view learning are introduced into hand posture recognition. Two classifiers with Haar and HoG are respectively initiated on a small labeled sample data. This method with co-training utilize the complementary action between different features and improve the performance of classifiers in a semi-supervised framework. (4) A real-time vision-based gesture interaction interface for image browsing is designed and implemented, which combines hand detection, tracking and gesture recognition. Then gesture recognition is performed with fast scale-space feature detection. Finally,the recognition results drive the operations such as shifting cursor position and open/close image preview in the browsing interface. Under the framework combining detection, tracking and recognition, the demo interface gets satisfactory results.
馆藏号XWLW1279
其他标识符200418014628030
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6113
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
方亦凯. 基于视觉的手势识别方法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20041801462803(2870KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[方亦凯]的文章
百度学术
百度学术中相似的文章
[方亦凯]的文章
必应学术
必应学术中相似的文章
[方亦凯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。