CASIA OpenIR  > 毕业生  > 博士学位论文
多模态仿生两栖机器人设计与控制
其他题名Design and Control of a Biomimetic Amphibious Robot with Multi-Mode Motion
杨清海
学位类型工学博士
导师谭民 ; 喻俊志
2009-02-26
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词两栖机器人 机构设计 可变构型 Cpg控制 多模态运动 Amphibious Robot Mechanical Design Body Deformation Cpg Control Multi-mode Motion
摘要随着机器人技术的发展,具有良好环境适应能力的两栖机器人引起了人们越来越多的兴趣和重视。本文针对两栖类动物的身体结构和运动特点,结合课题组的相关研究工作,研制开发了一种多模态仿生两栖机器人系统。 首先,根据两栖机器人的作业环境和运动需求,设计了一种具有多种运动模态的仿生两栖机器人,名为“AmphiRobot”。它以仿鲹科鱼类游动为水下主要运动方式,以仿轮式运动为陆地主要运动形式;前者由模块化设计的仿鱼推进单元实现,后者由轮桨机构实现。可替换轮桨的“鳍肢”机构既能实现在水中的直行、俯仰、转弯、倒退等运动,又能在地面实现机器人“爬行”。 其次,对于地面运动控制,针对两栖机器人较长的身体机构,提出了一种可变构型转弯方法(Body-deformation steering approach)。利用仿鱼推进单元可偏离机器人纵向中线的特点,改变驱动轮桨和被动轮的相对位置,形成瞬时转动中心,实现转弯。在此基础上,分析了可变构型转弯的几种实现方式以及转弯过程中机器人的稳定性,得出了第三关节单独偏转的最优转向方式。 第三,对于水中运动,结合两栖机器人的结构和运动特点,建立了基于非线性振荡器的链式中枢模式发生器(Central Pattern Generator, CPG)网络模型;CPG网络模型由尾鳍CPG和胸鳍CPG两部分组成,其结构左右对称,分别由两侧输入激励驱动。当两侧激励相同时,机器人直行游动;激励不同时,实现转弯。根据鱼类的游动特点,提出了具有不同阈值的关节饱和函数,实现了摆动部长度、摆动频率和幅度的协调控制,以及控制参数的在线实时计算。 第四,基于两栖机器人的红外传感器信息,根据可变构型转弯方法,以及CPG控制的转弯量化强度,制定了包含转弯量化强度的细化规则库,实现了地面和水下避障控制;利用改进胸鳍法,实现了机器人在水中的俯仰运动;利用转体机构,实现了仿鲹科鱼类游动和仿海豚游动的平稳过渡;结合已有的陆地运动模态和水下运动模态,设计了一系列模式切换的智能策略来执行水陆切换,实现了水陆两栖运动。 最后,对所开展的工作进行了总结,并指出了下一步可开展的研究工作。
其他摘要With the development of the robotic technology, amphibious robot with excellent adaptability draws great attention and interest from academics and engineers all over the world. Based on the body structure, motion characteristics of amphibians, in conjunction with previous related work of our research group, a multi-mode biomimetic amphibious robot system has been developed. Firstly, a biomimetic amphibious robot with multi-mode motion, named “AmphiRobot”, has been devised meeting the requirements for working environment and locomotion. AmphiRobot takes the carangiform swimming as the primary locomotion pattern under water and the wheel-like motion as the basic way on land. The former is implemented by a series of modular propelling units, whilst the latter by wheel-paddle that can be replaced by a flipper assisting the robot to achieve driving, pitching, turning and reversing in water and “crawling” on ground. Secondly, considering the slender body structure, a body deformation steering approach has been proposed for the locomotion on land, which utilizes the propelling units’ departure from the longitudinal centerline of the whole body. Since the deformation of the body shape alters the relative position of anterior driving wheel-paddles and rear passive wheels, the amphibious robot will form its instantaneous center of rotation and implement steering. By analyzing the characteristics of available implementation of body deformation steering and the stability of the robot, an optimal method has been achieved by regulating the separate departure of the third propelling unit. Thirdly, according to the structure and locomotion characteristics of amphibious robot, a chainlike network model of Central Pattern Generator (CPG) based on the nonlinear oscillator has been established for the underwater locomotion, which comprises the tail fin CPG and pectoral fin CPG. The CPG model consists of two eudipleural parts that are driven by the different input signals respectively. When the input of the left part of the CPG model is equal to the right one, the robot swims straightforward; otherwise, the robot will turn to one side. Based on the swimming characteristics of fish, a coordinated control method is further proposed, which can coordinate the length of undulation part, oscillating frequency and amplitude in swimming control by regulating the threshold values of the saturation function for each propelling unit. The real-time online calculat...
馆藏号XWLW1308
其他标识符200518014628015
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6141
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
杨清海. 多模态仿生两栖机器人设计与控制[D]. 中国科学院自动化研究所. 中国科学院研究生院,2009.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20051801462801(4560KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[杨清海]的文章
百度学术
百度学术中相似的文章
[杨清海]的文章
必应学术
必应学术中相似的文章
[杨清海]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。