CASIA OpenIR  > 毕业生  > 博士学位论文
低质量人脸图像超分辨率重建算法研究
其他题名Algorithms for Super-resolution Reconstruction from Low Quality Facail Images
张雪松
学位类型工学博士
导师彭思龙
2009-05-24
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词人脸图像 超分辨率 规整化 图像配准 模糊辨识 Face Image Super-resolution Regularization Image Registration Blur Identification
摘要图像的超分辨率重建过程通常涉及低分辨率图像序列中的运动估计、去模糊、降噪以及图像插值,是一个典型的病态离散逆问题。本论文研究由低质量人脸图像重建出一幅更高质量人脸图像的超分辨率问题,分别在单帧重建、多帧重建以及盲超分辨率三个方面进行了研究。 本论文提出了一种单张正面人脸图像超分辨率重建的自适应流形学习方法。相对于多帧超分辨率重建,单帧超分辨率重建在数学上是一个更为病态的问题。由于人脸图像的高频信息通常是在局部存在微妙变化的,我们通过一种新的流形学习方法LPP(Locality Preserving Projections),在人脸局部子流形上分析人脸图像的局部结构特征,并在LPP特征空间中动态搜索出与输入图像块最相似的像素块集合作为学习样本,即实现了自适应学习样本选择。最后,通过特征变换(Eigen-transformation)的方法有效地恢复出了低分辨率图像中所缺失的高频信息。 将人脸图像块看作一些特定信号类,本论文将传统的“重建约束”与人脸图像块的“正交补特征子空间约束”统一在贝叶斯框架下,提出了一种新的基于学习的人脸图像超分辨率重建的规整化方法。在仿射变换运动模型下,将图像的四邻域插值方法拓展为图像的梯度场估计问题,导出了更一般的形变图像关于运动参数的Jacobi矩阵形式。并且根据对代价函数的全微分和偏微分展开,将非线性最小二乘问题转化为了线性最小二乘问题,并给出了三种运动参数与高分辨率图像的联合迭代估计算法。此外,给出了一种超分辨率重建问题中的规整化参数的自适应计算方法。 最后,提出了利用多帧低分辨率图像,在仿射变换模型下,非参数化模糊辨识、运动估计与超分辨率重建的联合估计方法。通过证明采用仿射形变的观察模型的一个等价形式,我们讨论了具有任意形状和大小的模糊核的估计方法及其快速算法。将模糊的零子空间约束作为一项规整化泛函,给出了在模糊估计和图像配准、重建之间的交替优化算法。这种迭代算法使得这个三重耦合问题的求解始终限定在一个复杂程度可控的范围之内。
其他摘要Image super-resolution is a typically ill-conditioned (if not ill-posed) discrete inverse problem in which motion estimation, deblurring, denoising and scaling-up tasks are usually involved to obtain a higher optical resolution image from a sequence of low-resolution images. The theme of this thesis is the high quality facial image super-resolution reconstruction (SRR) from low quality ones, including SRR using single image, SRR from sequences and blind super-resolution (BSR). This thesis offers contributions in three main areas. First, we propose an adaptive manifold learning method for frontal facial image SRR from a single image. Single frame SRR is mathematically more ill-posed relative to multi-frame SRR. Since the high-frequency information of facial images is usually contained in the local subtle variations, we analyze the local structures of facial images on the sub-manifolds using a new manifold learning method, Locality Preserving Projections (LPP). We accomplish the adaptive sample selection by searching out patches online in the LPP sub-space, which makes the resultant training set tailored to the testing patch, and then effectively restore the lost high-frequency components of the low-resolution face image by patched-based eigen-transformation using the dynamic training set. Second, looking upon the patches of face image as some specific classes of signals, we propose a new regularization method for facial image SRR in which the orthogonal complement subspace of image patches is used as a regularization constraint and combined with the classic reconstruction constraint under a Bayesian framework. Under affine motion model, we derive a more general Jacobian of the warped image w.r.t motion parameters by extending the four-neighbor image interpolation to the estimation of image gradient field. We further develop three iterative algorithms for the joint estimation of motion parameters and HR image by means of full or partial differential expansions of the cost functional, which helps convert the original non-linear least square problem to a linear one. An adaptive method is also presented for the computation of regularization parameter. Third, using a sequence of LR images under affine motion, we propose a method for joint registration, non-parametric blur identification and high-resolution image estimation. We discuss the estimation method for blurs with arbitrary shape and size beginning with the proof of an equivalent of th...
馆藏号XWLW1370
其他标识符200618014628049
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6154
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
张雪松. 低质量人脸图像超分辨率重建算法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2009.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20061801462804(2731KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张雪松]的文章
百度学术
百度学术中相似的文章
[张雪松]的文章
必应学术
必应学术中相似的文章
[张雪松]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。