CASIA OpenIR  > 毕业生  > 博士学位论文
复杂场景下的运动目标检测
其他题名Moving Object Detection in Complex Scenes
刘舟
学位类型工学博士
导师谭铁牛
2009-05-30
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词运动目标检测 背景建模 阴影去除 动态背景 遗弃物检测 Moving Object Detection Background Modeling Shadow Removal Dynamic Background Left-luggage Detection
摘要随着人们安防意识的不断提高,智能视觉监控的应用前景也越来越广。运动目标检测作为智能监控中的底层问题,它们是后续各种处理环节的基础,也是视觉监控技术自动化和实时应用的关键。本文主要围绕基于背景建模的运动目标检测展开研究,主要的工作和贡献有: 1. 提出了一种阴影去除方法,它能有效克服基于颜色特征的阴影去除方法需要固定阈值的缺点。我们首先基于阴影的像素级信息、局部区域信息和全局信息构建阴影模型。然后,在阴影模型的基础上,我们利用马尔可夫随机场构建像素点的标号(阴影或非阴影)与相邻像素点阴影模型的联系来进行阴影去除。在我们的方法中,阴影的全局统计信息能有效的估计分类器中的参数,并使该分类器能够随着阴影特性的变化而发生改变,从而能有效克服基于颜色特征的阴影去除方法需要固定阈值的缺点。 2. 针对GMM(Gaussian Mixture Model)方法和KDE(Kernel Density Estimation)方法的不足,构建了KDE-GMM混合模型(KDE GMM Hybrid Model, KGHM)用于背景建模。GMM方法和KDE方法是目前最常用的两种背景建模方法。因为他们没有融合空间信息,对于处理扰动剧烈的背景时会造成大量误报。除此之外,GMM方法需要手工设定模型中高斯成份的数量,KDE方法需要存储大量样本而且核函数窗宽的选择对于概率密度估计也非常重要。当应用于背景建模时,KDE-GMM混合模型能有效克服上述KDE方法和GMM方法的不足。 3. 基于KDHM模型,提出了一种能同时处理动态背景和阴影的运动目标检测方法。首先基于KGHM,构建背景、前景和阴影的概率密度函数;然后通过构建运动目标和非运动目标的概率密度函数将一个三类分类问题(背景、前景和阴影)转变为一个两类的分类问题(运动目标和非运动目标);最后用MAP(Maximum A Posteriori)-MRF框架完成运动目标和非运动目标的分类。 4. 基于目标模型信息,提出了一种目标检测方法,它能有效处理伪装问题。在这里,检测算法之所以能够处理伪装问题是因为目标分割融合了目标模型信息,而目标模型又能为对应目标的分割提供轮廓和颜色等先验信息。 5. 针对监控中的实际需求,基于背景建模思想提出了一种无需跟踪过程的遗弃物检测方法,它能有效克服复杂场景中因为跟踪的不准确而可能带来的误报。 总而言之,本论文对基于背景建模的运动目标检测中的三个关键问题(阴影、动态背景和伪装)进行了研究。同时,还针对监控场景的实际需要,对遗弃物检测进行了探索。
其他摘要With the growing requirement for security, intelligent visual surveillance is now seeing increasing applications. As the low-level problem in intelligent visual surveillance, moving object detection is the basis for the subsequent steps, such as object tracking and object classification. Therefore, it is the key issue for the application of visual surveillance. In this thesis, we concentrate on moving object detection based on background modeling. The main contributions of this work are as follows: 1.We present a novel method for shadow removal using Markov Random Field (MRF). In our method, we first construct the shadow model based on hierarchical information. At the pixel level, we use the GMM to model the behavior of cast shadow for every pixel in the HSV color space. At the global level, we will exploit the statistical feature of shadow in the whole scene over several consecutive frames to make a preclassifer accurate and adaptive to the change of shadow. Then, based on the shadow model, an MRF model is constructed for shadow removal. The main novelty of our method is that, although our method is chroma based method, we can make the preclassifier accurate and adaptive to the change of shadow by using the statistical feature of shadow at the global level. 2.The KDE (Kernel Density Estimation)-GMM (Gaussian Mixture Model) Hybrid model (KGHM) is proposed to overcome some problems of KDE and GMM for background modeling. For the KDE method, one has to save many samples for accurate density estimation, and the selection of bandwidth is also very important for estimation. For the GMM method, the number of Gaussian components should be set manually. Moreover, both methods do not fuse spatial information to deal with highly dynamic scenes. The KGHM can overcome the problems described above, when applied in the background modeling. In the KGHM, the spatial information is fused in two ways: first, KGHM is constructed in grid (bin) level; second, the kernel function is used to model the dependencies between a sample and its neighboring bins. Our method does not need to store samples, as the coordinates of every pixel which are described by kernel function don’t change over time. Moreover, we use the Gaussian merging and deleting method to determine the number of Gaussain components in the GMM part, dynamically. 3.Based on the KGHM, we propose a moving object detection method which can deal with shadow and dynamic background, simultaneously. We first constru...
馆藏号XWLW1328
其他标识符200518014628076
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6190
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
刘舟. 复杂场景下的运动目标检测[D]. 中国科学院自动化研究所. 中国科学院研究生院,2009.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20051801462807(15823KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘舟]的文章
百度学术
百度学术中相似的文章
[刘舟]的文章
必应学术
必应学术中相似的文章
[刘舟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。