CASIA OpenIR  > 毕业生  > 博士学位论文
非重叠多摄像机场景下的目标连续跟踪
其他题名Continuously Tracking Objects Across Multiple Non-overlapping Cameras
蔡莹皓
学位类型工学博士
导师谭铁牛
2009-05-30
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词目标连续跟踪 多摄像机 拓扑关系分析 数据关联 目标匹配 Continuously Tracking Multiple Cameras Topology Estimation Data Association Object Matching
摘要现代社会中摄像机作为人类视觉的延伸,已经进入人类社会的方方面面。智能视觉监控系统作为安全监控的一种有效手段受到了各国政府的高度重视。目前,已有的智能视觉监控技术主要包括在单个摄像机下对监控场景中的感兴趣目标进行自动检测、跟踪和分类以及相应的行为分析。每路摄像机有各自的监控任务,监控系统中摄像机和摄像机的监控任务之间没有关联。然而由于单个摄像机的视野范围有限,为了满足大范围监控的需要,就需要多个摄像机协同工作。随着摄像机数目的急剧增加,传统的基于人工的被动监控已经无法满足监控任务的需要,如何自动分析多个摄像机所拍摄的视频中的内容,真正意义上实现大范围监控至关重要。本文主要探讨了非重叠多摄像机场景下的目标连续跟踪研究的若干问题,主要包括:(1)基于表观模型的运动目标匹配和识别;(2)多摄像机区域拓扑连接关系分析;(3)多摄像机下的数据关联。本文的主要工作如下: 1.提出了一种基于主颜色信息的运动目标匹配方法;将多摄像机下目标匹配的问题转换为整数线性规划框架下寻找对应特征点的问题。通过取以边缘点为中心的一个邻域计算特征描述子。我们采用主颜色特征对局部特征进行描述。基于主颜色信息的特征描述方法将视觉感知差异比较小的颜色映射到同一个颜色值,只包含局部区域最主要的颜色,去除了不重要的颜色带来的干扰,从而降低了特征的维数,减少了所需的存储空间。另外,我们采用了一种几何约束来剔除不可靠的对应点。本文提出的方法隐含的融入了颜色空间信息,实验结果证明了方法的有效性。 2.由于监控场景中,目标的运动是有目的性的,他们的运动会受到场景中一些特定目的地的影响,比如``到达区域"和``离开区域"。通过观察一段时间内运动目标在多摄像机场景中运动的统计特性即可获得多摄像机场景的语义模型。我们将多摄像机场景的语义模型用一个拓扑连接关系图表示,并提出一种基于非监督学习的多摄像机拓扑连接关系分析方法。已知多摄像机下这些区域之间的拓扑连接关系,我们只需要匹配有着连接关系的区域中出现和离开的运动目标,从而减少了目标匹配的次数,提高了多摄像机系统效率并且减少了错误匹配的可能。 3.提出一种基于贝叶斯理论的数据关联分析方法。多摄像机下的数据关联指当出现在摄像机中的运动目标为其他摄像机下出现过的运动目标时,我们给该运动目标一个唯一的标号;若运动目标未曾在其他摄像机下出现过,则给该运动目标一个新的标号,从而实现运动目标在大范围场景中的连续跟踪。我们通过贝叶斯框架融合运动目标匹配信息和目标的时空特性实现了运动目标在多个摄像机下的关联。在运动目标匹配方面,我们采用了一种扩散距离对总体以及局部直方图进行匹配。与其他直方图距离相比,扩散距离能够减小光照变化带来的影响,从而提高运动目标匹配的准确性。在计算目标的时空特征方面,对于每一对有着连接关系的离开区域和到达区域,我们用混合高斯模型来描述运动目标的转移时间分布。
其他摘要With the ever growing requirement for safety, more and more cameras have been applied in surveillance applications. Most previous work on visual surveillance has focused on single camera processing including object detection, tracking, classification and activity recognition. Tasks under each cameras field of view are independent from each other. Instead of having a high resolution camera with a limited field of view, multiple cameras provide a solution to wide area surveillance by extending the field of view of a single camera. One problem associated with a multi-camera system is to automatically analyze and fuse information gathered from multiple cameras so that human intervention is reduced to a maximum extent. In this thesis, we concentrate on the problem of continuously tracking objects across multiple non-overlapping cameras. The key issues include: (1) Object representation and matching, (2) Topology estimation and (3) Data association across cameras. Specifically, the following topics are addressed in the thesis: 1.We propose a new solution to the problem of appearance matching across multiple non-overlapping cameras. Objects of interest, pedestrians are represented by a set of region signatures centered at points sampled from edges. The problem of frame-to-frame appearance matching is formulated as finding corresponding points in two images as minimization of a cost function over the space of correspondence. The correspondence problem is solved under integer optimization framework where the cost function is determined by similarity of region signatures as well as geometric constraints between points. Experimental results demonstrate the effectiveness of the proposed method. 2.Since moving objects do not move around the scene randomly, by observing the targets behavior in a short period of time, conclusions can be drawn about the semantic model of the scene. The semantic model of multiple cameras is represented by a topology graph. The nodes in the topology graph are defined as entry(exit) zones in each camera. The connections in the topology graph are used to indicate the connectivity between nodes in a network of cameras. We propose an unsupervised method for recovering the topology of multiple cameras with non-overlapping fields of view. The topology graph of multiple cameras helps to predict the reappearance of moving objects. If one object disappears from the node of one cameras field of view, we only need to search the reappearance of t...
馆藏号XWLW1326
其他标识符200518014628073
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6191
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
蔡莹皓. 非重叠多摄像机场景下的目标连续跟踪[D]. 中国科学院自动化研究所. 中国科学院研究生院,2009.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20051801462807(9675KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[蔡莹皓]的文章
百度学术
百度学术中相似的文章
[蔡莹皓]的文章
必应学术
必应学术中相似的文章
[蔡莹皓]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。