CASIA OpenIR  > 毕业生  > 博士学位论文
人脸识别关键技术的研究与应用
其他题名Research and Application on the Key Algorithms of Face Recognition
谭怒涛
学位类型工学博士
导师刘昌平
2010-06-04
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词人脸识别 主动形状模型 光照处理 局部二元模式 子空间分析 Face Recognition Asm Illumination Processing Lbp Oro
摘要人脸识别作为生物特征识别的一个重要分支在身份认证、视频监控、人机交互、娱乐动画、考勤、门禁等领域有着广泛的应用前景。本文主要从特征点定位、光照处理、特征提取、特征降维等几个方面研究全自动人脸识别的一些关键性算法,主要工作可以归纳如下: (1)在特征点定位方面,首先针对主动形状模型(ASM)对各个特征点定位的准确度存在不一致的特点提出了两层主动形状模型方法,即先把人脸特征点划分为内轮廓点和外轮廓点两个部分,然后分别定位,以克服外轮廓点对内轮廓点定位的影响。其次,针对主动形状模型对初始化位置比较敏感的特点提出了一种基于关键点定位和PCA估计法的初始化策略,提高了初始化精度,为ASM摆脱局部最小化奠定了基础,并能更快的收敛。 (2)在光照预处理方面,首先针对Retinex所采用的高斯滤波核属于各向同性的不足提出了一种新的水平边缘滤波核,以使处理后的图像能够突出对人脸识别起更重要作用的水平边缘,从而提高Retinex的光照处理能力。其次,针对不同的光照预处理方法提出了一种融合的策略,通过融合由不同预处理方法得到的归一化图像,使新的图像能够保留不同方法的优点,从而更具有鉴别性。 (3)在特征提取方面,首先提出了一种概率局部二元模式(LBP)算子,即利用中心点与邻域点差值的符号和幅值共同描述每个LBP模式发生的概率,从而进一步提高了LBP对光照和噪声的鲁棒性。其次,以LBP为基础提出了一种基于单张图像的人脸识别方法。在该方法中,采用边缘图作为LBP特征提取的基础图像提升了LBP特征的鉴别力,同时利用弹性匹配方法计算相似度,使算法能够更加鲁棒于平移、旋转、表情等带来的变化。 (4)在子空间分析方面,首先针对正交秩一张量子空间算法(ORO)提出了一种改进策略,即在迭代求解过程中不断更新k-近邻,使接下来待求解的子空间能够更专注于利用已有子空间还难以区分的对象组,从而提高子空间的区分力。其次,提出结合ORO与LBP直方图特征进行人脸识别,实验结果表明,其性能好于基于LDA降维的LBP方法。 (5)在人脸识别系统设计与应用方面,首先介绍了人脸识别系统设计包含的几个阶段,然后研究了模板选择和增量学习对人脸识别系统性能的影响,最后介绍了使用以上关键技术的汉王人脸识别系统的几个产品应用,如人脸通,该产品目前已经上市销售并取得了很好的业绩。
其他摘要As an important branch of biometrics, face recognition has broad application prospects in identification, video surveillance, human-computer interaction, cartoon, attendance, access control and so on. The main content of this thesis is composed of researches about some key algorithms of full-automatic face recognition, such as feature point location, illumination processing, feature extraction and dimension reduction. It can be summarized as follows: (1) Feature Point Location. First, since the location accuracy of different feature points by the original Active Shape Model (ASM) is inconsistent, a new two layer Active Shape Model is proposed. It first divides the feature points into inner contour points and outer contour points, and then locates them respectively to prevent the location of the inner contour points be affected by the outer contour points. Second, seeing that the original ASM is very sensitive to the initial position of each feature point, a new method for setting the initial position based on key points location and PCA is proposed. The experimental result shows that this method can improve the accuracy of initialization greatly and make ASM get rid of local optimum and converge faster. (2)Illumination Processing. First, because the Gaussian filter used by Retinex is isotropic, a new horizontal edge filter is proposed to substitute it. On the processed image, this new filter can highlight horizontal edges, which are more important than vertical ones for face recognition. Thus, it can improve the performance of Retinex for processing illumination. Second, a new method fusing different illumination pretreatment algorithms is proposed. It fuses the normalized images gotten by different pretreatments into a new one to preserve the advantages of those pretreatments. (3)Feature Extraction. First, we propose a new probabilistic Local Binary Pattern (LBP) operator. It uses both the amplitude and sign of the difference between the center and its neighborhood to depict the occupancy probability of each pattern, thereby the robustness of LBP to illumination and noise can be further enhanced. Second, we present a new method based on LBP and a single image. In this method, edge image is used for extracting LBP histogram and can obtain better result than gray image. Besides, elastic matching is suggested to calculate the similarity. It can make this algorithm more robust to the variances brought by translation, rotation, expression and so on. (4)Sub...
馆藏号XWLW1503
其他标识符200718014628061
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6294
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
谭怒涛. 人脸识别关键技术的研究与应用[D]. 中国科学院自动化研究所. 中国科学院研究生院,2010.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20071801462806(1961KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[谭怒涛]的文章
百度学术
百度学术中相似的文章
[谭怒涛]的文章
必应学术
必应学术中相似的文章
[谭怒涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。