CASIA OpenIR  > 毕业生  > 博士学位论文
Alternative TitleDesign and Implementation of a Cable-driven Auto-levelling Robot
Thesis Advisor易建强
Degree Grantor中国科学院研究生院
Place of Conferral中国科学院自动化研究所
Degree Discipline控制理论与控制工程
Keyword绳索牵引 水平调节 牵引力调节 机器人 控制系统 Cable-driven Leveling-adjustment Force-tuning Robot Control System
Abstract绳索牵引自动水平调节机器人,能解决长期困扰载荷装卸领域的姿态调节和受力控制难题,有效保障昂贵及高精密性的载荷在吊运和装卸过程中的安全。因此相关研究具有重要的理论意义和实用价值。本论文以绳索牵引自动水平调节机器人为背景,结合国家863计划资助项目“实现载荷水平调节的四绳索垂直牵引装卸机器人研制”,研制了一套绳索牵引自动水平调节机器人,并对其载荷对接面水平调节问题和绳索牵引力均衡分配问题展开研究。所完成的工作主要包括以下六个方面: 首先,对现有的吊具系统及其控制问题进行了介绍,综述了国内外对吊具系统及相关调节理论的研究进展,并阐述了选题背景和论文主要内容。 其次,结合目前常用的手工调节吊具系统,提出了绳索牵引自动水平调节机器人的总体结构设计方案,并在此基础上对建模问题、调节策略和控制器进行了分析与研究。 第三,根据吊具系统的总体设计思路,结合工程实现和实际应用等因素,研制了绳索牵引自动水平调节机器人样机系统,并开发了手动和自动控制的软件平台。 第四,理论分析了绳索长度变化对绳索牵引力和载荷对接面水平倾角的影响,提出了一种基于模糊神经网络的分步控制策略,以确保在绳索牵引力均衡分配的前提下实现载荷对接面水平调节。实验结果表明,机器人系统性能稳定,控制策略有效,且能满足实际应用的精度需求。 第五,为实现载荷对接面水平倾角调节和绳索牵引力均衡分配的同步控制,提出了一种分层模糊控制器,其低层分别实现载荷对接面水平倾角的调节和绳索牵引力的均衡分配,而其高层用来实现两个子系统的协调控制。实验结果验证了该控制方法的有效性。 最后,对取得的研究成果进行了总结,并展望了需要进一步研究的工作。
Other AbstractTo solve the level-adjusting and force-tuning problems of high accurate and costly payloads when loading and unloading, the auto-leveling robot is needed. Under the support of the national 863 Program“Development of a Four-cable-driven Auto-leveling device for Leveling Adjustment”, a cable-driven auto-leveling robot is developed based on the analysis of merits and drawbacks of current adjusting methods and mechanisms. Also, in this dissertation, control problems of level-adjusting and force-tuning of the cable-driven auto-leveling robot are studied extensively. These problems are challengeable and meaningful in both theory and application aspects. In detail, the content of this research includes the following six parts: Firstly, devices for leveling adjustment, as well as their control problems are introduced. The status of the control problem of leveling adjustment systems is comprehensively surveyed. And, background and main work of this dissertation are given. Secondly, after introducing the current manual leveling adjustment systems, general structure of the robot is proposed, Meanwhile, the problems of modeling, control strategy and controller design are analyzed. Thirdly, according to the design philosophy and practical application, a cable-driven auto-leveling prototype system is developed. Such cable-driven auto-leveling prototype system can be used as the manual and automatic control platforms. Fourthly, after analyzing and summarizing the challenging characteristics of pulling forces and angles in the adjusting process, a synthetic strategy is proposed to realize the leveling adjustment under the assumption that the balance of the pulling forces is firstly satisfied. Experimental results demonstrate the steady performance of the system and the effectiveness of the synthetic strategy, and show that the synthetic strategy can meet the precision requirements in practical applications. Fifthly, to realize the synchronous control of the level-adjusting and the force-tuning, a hierarchical fuzzy controller, which has the ability to deal with the rule explosion problem, is proposed. The hierarchical fuzzy controller contains two layers – the low level layer which is used for leveling adjustment and force tuning, and the high level layer which is used to coordinate the two outputs from the low level layer. And experimental results demonstrate the feasibility of the method.
Other Identifier200818014628027
Document Type学位论文
Recommended Citation
GB/T 7714
余意. 绳索牵引自动水平调节机器人的设计与实现[D]. 中国科学院自动化研究所. 中国科学院研究生院,2011.
Files in This Item:
File Name/Size DocType Version Access License
CASIA_20081801462802(14463KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[余意]'s Articles
Baidu academic
Similar articles in Baidu academic
[余意]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[余意]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.