CASIA OpenIR  > 毕业生  > 博士学位论文
大形变指纹匹配算法研究
其他题名Research on Distorted Fingerprint Matching
臧亚丽
学位类型工学博士
导师田捷
2013-05-19
学位授予单位中国科学院大学
学位授予地点中国科学院自动化研究所
学位专业计算机应用技术
关键词指纹匹配 非线性形变 交叉匹配 标准指纹模板 尺度缩放 模板联合 Fingerprint Matching Nonlinear Distortion Cross-matching Standard Fingerprint Template Scale Template Consolidation
摘要计算机和网络技术的发展,使得我们可以更方便有效地保存、共享和传播各类信息,也催生了对可靠的身份认证技术的需求。传统的口令和卡片认证等方式不易管理、使用也不方便,而且不能保证物理身份和数字身份的统一。生物特征识别技术正是克服了这一关键问题而受到了广泛的关注。而指纹识别技术是目前研究和应用最为广泛的生物特征识别技术之一。 指纹识别技术在近十几年获得了飞速的发展,算法性能和硬件水平也有了跨越性的提高。但是自动指纹识别系统的性能相较于指纹专家的手工比对还有很大的差距,远远达不到理论估计的水平。其中一个重要的影响因素就是指纹采集过程中引入的非线性形变。指纹形变的普遍存在,严重影响了指纹匹配算法的精确度,导致指纹识别系统整体性能的下降。不同类型采集设备获取的指纹图像间形变差异对自动指纹识别系统性能的影响尤其明显。 我们将常规匹配对形变较大的指纹图像的匹配和交叉匹配统称为大形变指纹匹配。论文主要针对大形变指纹匹配进行了深入研究和探讨,主要研究工作和创新点概括如下: 1. 针对形变指纹匹配中,指纹细节点等局部特征由于受到形变的影响使得相似度分数降低,而全局特征虽然对形变较为鲁棒但匹配精度有限,系统匹配性能因此整体偏低的问题,提出了融入先验知识的形变指纹特征分数融合算法。该算法首先对指纹图像进行常规的增强、特征提取和预对准操等作,并基于预对准的结果提取用于融合的多个特征分数;然后分析了各种指纹特征分数的取值规律以及其对指纹图像最终相似度分数的贡献等先验知识,并通过遗传算法对各个特征分数的融合参数进行训练;最后基于训练出的最优融合参数,对所提取的特征分数进行融合,以获得指纹图像的最终相似度分数。我们在FVC2004 DB1设计实验,对提出的算法进行了训练和测试。实验结果表明,所提出的先验知识和融入先验知识的特征分数融合算法确实有效地提高了形变指纹匹配的性能。 2. 针对指纹交叉匹配中尺度缩放算法不适用于模板匹配、形变处理算法比较耗时、性能也有待提高的问题,结合目前先进的指纹 MCC(Minutia Cylinder-Code,细节点圆柱编码)特征,提出了一种基于标准指纹模板的形变指纹尺度缩放和匹配算法。该算法首先基于指纹细节点信息建立邻近细节点结构用以估计局部尺度缩放参数;再通过局部尺度缩放参数计算平均尺度缩放参数;然后基于局部尺度缩放参数和平均尺度缩放参数构建 MCC 特征对指纹图像进行匹配。算法继承和改进了 MCC 特征仅使用指纹细节点信息和可以容忍一定程度的非线性形变的优势,可以对指纹模板进行交叉匹配,并且计算简单,实用性强。在 FingerPass 指纹交叉匹配数据库上的实验结果也证明了该算法的有效性和高效性。 3. 针对大形变指纹匹配性能较差、而实际指纹识别应用系统中通常存储多个模板用于匹配的情况,提出了一种基于模板联合的形变指纹匹配算法。算法仅利用细节点信息进行模板的联合,保证算法的普遍适用性;更重要的是,在模板联合的过程中,通过使用形变模型和多种规则,有效地减小了非线性形变,形成一个有效面积更大,形变更小的指纹模板,提高了基于联...
其他摘要The technology of computer and internet help us to save, share and disseminate information more conveniently and more effectively, while the demand to reliable personal identification techniques increases rapidly in consequence. The traditional identification methods through password, key and ID card etc. are unsafe because they need to be remembered or taken along and are easy to be obtained or abused by others. What’s more, they cannot ensure the consistency of the digital identity and physical identity of one person, without which the security of the information could not be protected effectively. Biometrics, which can resolve these problems fundamentally, attract more and more attention in the last several decades. While fingerprint recognition is one of the most studied and widely used biometrics. Recently great improvement has been achieved in the fingerprint sensing technology and automatic recognition algorithms. But the accuracy of state-of-the-art fingerprint matching systems is still not comparable to human fingerprint experts in many situations. One of the most important reasons is the nonlinear distortion produced in acquisition process. The wide existences of distortion in fingerprint images reduce the accuracy of matching algorithm and the performance of the system obviously, especially the distortion of fingerprint images acquired from different sensors. We define the matching of fingerprints with large distortion and fingerprints from different sensors as distorted fingerprint matching. This work focus on the study and analysis about distorted fingerprint matching. The main contribution of this thesis can be concluded as follows: 1. In the matching of fingerprints with large distortion, the similarity of local features, e.g. minutiae, are easily to be affected by distortion while the accuracy of global features is limited by their fuzziness, which lowers the overall performance of the matching system. A score-level fingerprint feature fusion algorithm with prior knowledge is proposed to resolve this problem: a series of regular processes including enhancement, feature extraction and registration are executed firstly, and several scores are calculated based on the registration; then the distribution of each scores and their contribution to the final matching score are analyzed as prior knowledge, and the fusion parameters are trained through a genetic algorithm accordingly; finally, all of the scores calculated and analyzed are fuse...
馆藏号XWLW1890
其他标识符201018014629096
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6502
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
臧亚丽. 大形变指纹匹配算法研究[D]. 中国科学院自动化研究所. 中国科学院大学,2013.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20101801462909(4758KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[臧亚丽]的文章
百度学术
百度学术中相似的文章
[臧亚丽]的文章
必应学术
必应学术中相似的文章
[臧亚丽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。