CASIA OpenIR  > 毕业生  > 博士学位论文
基于数字几何的脑结构形状分析研究及应用
其他题名Shape Analysis of Brain Structure Based on Digital Geometry
陈雪姣
学位类型工学博士
导师何晖光
2014-05-25
学位授予单位中国科学院大学
学位授予地点中国科学院自动化研究所
学位专业计算机应用技术
关键词医学图像 数字几何 脑结构 形状分析 Ricci流 Medical Image Digital Geometry Brain Structure Shape Analysis Ricci Flow
摘要大脑作为人体最重要的器官,一直是医学研究的热点。而随着影像技术的发展,人们可以获取到大脑的各种数据。如何对这些数据进行有效的处理分析,对我们认识大脑、理解大脑有着重要的意义。与此同时,随着理论几何的进步,尤其是数字几何技术的各种研究,将数字几何尤其是计算几何技术应用与大脑结构形状分析具有广泛的应用前景。本文将数字几何技术引入大脑结构形状分析,其主要研究内容包括: (1)本文提出一种基于欧氏几何的Ricci流球面参数化算法。该算法在离散欧氏Ricci流基础上,通过改进高斯曲率计算方式,利用欧式几何对球面几何进行逼近,解决了球面几何下Ricci流参数化无法严格收敛的问题。实验结果表明,该方法可以在实现Ricci流球面参数化的同时保持Ricci流固有的共形性,鲁棒性等特点。与传统欧氏几何Ricci流方法相比较,实验方法在保证准确性的同时加快了收敛速度,为后续研究分析提供可靠依据。 (2)本文提出一种基于Ricci能量的多尺度空间特征点提取及配准方法。该方法基于Ricci能量建立形状尺度空间,并在该尺度空间上提取多尺度特征点。然后,将多尺度特征点与全局Ricci能量相结合,进行球面配准。实验结果表明基于Ricci能量的多尺度空间特征点可以有效的表示形状几何结构性质,具有鲁棒性,不变性等特点;此外,由于Ricci能量在保有高斯曲率信息的基础上添加了共形因子信息;因此,本方法可以在有效的保证全局配准精度的同时提高特征点附近的局部配准精度。与传统配准方法相比较,实验方法在其配准精 度方面有显著的提高。 (3)本文提出一种基于球面调和系数的形状流形的核回归方法,并将这种方法应用于研究海马形状随年龄的变化趋势。与一般线性回归相比较,核回归方法可以更加准确的表示形状的变化趋势。实验结果表明随着年龄的增长,尤其是在老年阶段,海马形状的变化速度逐步加剧。此外,局部变化分析表明,在海马头部及尾部均有显著的收缩现象,而这些发现与现有医学研究结果相一致,从而证明了实验方法的可靠性。 (4)本文提出一种基于四面体网格的保体参数化及配准方法。在四面体网格的保体参数化的此基础上,本文对Demons算法进行改进,从而得到基于Demons算法的保体配准方法。利用模拟脑漂移数据对参数化及配准进行评估,其实验结果表明参数化及配准的过程可以有效的保持局部顶点Voronoi体积不变,与传统Demons算法相比较,我们的方法可以在有效的保证配准的精度的同时,大幅提高保体的比率。
其他摘要Since brain is one of the most important organ of human being, it is hot topic of medical science. With the rapid development of electrophysiology and neuroimaging techniques, people could obtain many kinds of data recorded from the brain. To deal with these data effectively will help us to understand the brain. At the same time, with the improvement of geometry theory, especially the research of digital geometry technique, it has great application foreground of introducing digital geometry to brain structure shape analysis. The main works and contributions of this dissertation are as follows: (1) We introduced a spherical surface parameterization method based on discrete Euclidean Ricci flow. By improving the calculation of Gaussian curvature, we use Euclidean geometry to approximate the spherical case, which avoid the convex problem of spherical Ricci flow. The experimental results show that our method can achieve the Ricci flow spherical surface parameterization efficiently, while keeping the properties of Ricci flow like conformal, intrinsic and robustness. Compared with traditional Ricci flow, our method improved the convergence speed while keeping the accuracy of the results, which provide the reliability for later analysis. (2) We proposed a multi-scale feature extraction and registration method based on Ricci energy. We first construct a scale space of the surface based on Ricci energy. Then, the multi-scale features are extracted from the shape space and used in the surface registration. The surface registration combined local multi-scale feature information and global Ricci energy together. The experimental results show that the multi-scale space features can successfully represent the shape geometry information with properties of intrinsic, robustness, etc. Besides, Ricci energy not only keep the Gaussian curvature information but also provide the conformal factor at the same time, which can represent more information of the shape. Thus, combining local feature and global Ricci energy together can make the registration improving the local accuracy around feature points while keeping the global registration result. Compared with traditional registration method with curvature and sulci, our method can improve the registration obviously. (3) We use spherical harmonic coordinate to construct shape manifold, and introduce kernel regression to the shape manifold. The regression method is applied to study the hippocampus changes ...
馆藏号XWLW1989
其他标识符201018014629080
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6603
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
陈雪姣. 基于数字几何的脑结构形状分析研究及应用[D]. 中国科学院自动化研究所. 中国科学院大学,2014.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20101801462908(10652KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈雪姣]的文章
百度学术
百度学术中相似的文章
[陈雪姣]的文章
必应学术
必应学术中相似的文章
[陈雪姣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。