CASIA OpenIR  > 毕业生  > 博士学位论文
基于主动学习的图像分类与检索
其他题名Active Learning based Image Classification and Retrieval
钮彪
学位类型工学博士
导师卢汉清 ; 程健
2014-05-27
学位授予单位中国科学院大学
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词图像内容分析 语义标注 图像检索 相关反馈 Image Content Analysis Semantic Annotation Image Retrieval Relevance Feedback
摘要近年来,随着数码采集设备、存储技术、及互联网技术的飞速发展,以图像为代表的数字内容迅猛增长,并已经成为 人们生产与生活中不可或缺的重要组成部分。然而,面对越来越多的图像数据,用户要想从海量内容中快速找到想要的图像正变得越来越难。因此,如何建立图像的高效索引、并实现准确检索已经成为当前迫切需要解决的问题。 本文主要针对图像数据内容,深入探讨和研究了图像语义属性特征表达以及基于主动学习的图像分类和检索等相关理论和方法。通过分析和挖掘语义属性的跨类别性质以及丰富的网络资源,建立了介于高层类别和底层特征之间的中层属性特征空间;综合考虑了样本的不确定性、多样性和稠密性等样本选择标准,借助用户在相关反馈过程中提供的信息,在标注样本 稀少的情形下有效改善了主动学习方法的性能。本文的主要工作和贡献如下: 1.针对语义属性无法适应不同应用的缺点,特别是在无训练样本图像分类(zero shot learning)任务中欠佳的表现,提出了学习辅助特征空间的方法。通过分析待分类类别里少量训练样本(small shot learning)的底层特征与对应类别之间的关系,我们提出了两种辅助特征学习方法:序列特征学习和判别性特征学习。这两种方法从不同的方面 考虑了样本极度缺少的不利条件,深入挖掘类别与底层特征之间的关系,并在此基础上形成了不同的判决性特征的学习方法,提高了图像特征表 达的判别力。 2.针对主动学习初始阶段标注样本稀少的不利条件,提出了一种基于属性特征空间的主动学习方法。传统的主动学习方法中,用户只是简单地提供样 本类标,系统对用户标注的样本也只是简单地放入训练样本集中,重新进行分类器的学习,针对这种传统的主动学习模式,利用用户提供的语义属 性和大量的网络图像,主动迁移源数据知识建立图像属性特征空间,降低了图像特征的维数和模型的复杂度,从而减少了相关反馈的轮次以及需标 注样本的数量,并且有效提高了图像检索的检索准确率。 3.深入探讨了传统主动学习中三种经典选样标准的融合,提出了一种自适应传播的主动学习方法。本文受图传播方法的启发,提出了一种新的批模式主动 学习方法,不仅考虑了标注样本和未标注样本之间的关系,还考虑了未标注样本内部的关系,根据样本数据的非平衡分布和人类的个性化反馈,综 合考虑和衡量了样本的不确定性、多样性和稠密性等样本选择标准以及标注样本与未标注样本之间的相互关系,并将这些标准和用户的个性化反馈 信息融入当前标注样本的确定度自适应传播函数的参数中,从而有效兼顾了主动学习方法的性能和效率。
其他摘要With the rapid development of digital capture devices, multimedia storage technology, and network technology, image data are growing up in recent years. These data have become an important and indispensable role in our everyday life. But faced with a growing number of images, finding the desired results successfully for users is becoming ever more difficult. To find an effective way for indexing and realizing image retrieval is a major challenge for us. In this dissertation, we study primarily on image data. We thoroughly study the semantic attribute representation of the image data and the classification and retrieval based on active learning methods. Through the analysis of cross-category nature of the semantic attributes and sufficient network resources, we have established an intermediate layer between the high-level semantic properties and the low level features. By considering the sampling criteria, such as uncertainty, diversity and density, and the user's response on the relevance feedback information, we improve the performance of active learning when the labeled instances are scarce. The main contributions of this paper are as follows: 1.With respect to the shortcomings of semantic attributes which cannot adapt to different applications, especially poor performance in the absence of training samples in image classification (zero shot learning), we propose two semantic attribute augmentation methods. With the analysis of the relationship between the features of a small amount of training samples to be classified (small shot learning) and corresponding categories, we propose two complementary learning: the sequence supplemental feature learning, and discriminative supplementary features learning. Both the methods take into account the extreme lacking in training samples in different ways and use different approaches to extend the semantic attributes space. We improve the performance of the image discriminating feature representation. 2.Early active learning is a very challenge task with respect to the few labeled samples. This dissertation proposes an active learning method based on the semantic attribute space. In conventional active learning method, the user simply serves as a sample with a label, the system simply put this sample into the training sample set and retrain the model. For this conventional active learning mode, with the user defined semantic attribute and a large number of images provided by the network, we have established a s...
馆藏号XWLW2018
其他标识符201118014628055
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6618
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
钮彪. 基于主动学习的图像分类与检索[D]. 中国科学院自动化研究所. 中国科学院大学,2014.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20111801462805(15203KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[钮彪]的文章
百度学术
百度学术中相似的文章
[钮彪]的文章
必应学术
必应学术中相似的文章
[钮彪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。