CASIA OpenIR  > 毕业生  > 硕士学位论文
基于概率模型的高分辨率卫星图像建筑物识别及变化检测
其他题名Building Recognition and Change InferenceBased on Very High Resolution Satellite Based on Very High Resolution Satellite Images Using Probabilistic Model
刘炜
学位类型工学硕士
导师普林特
2005-05-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词建筑物 物体识别 变化检测 概率模型 高分辨率卫星图像 Building Object Recognition Change Detection Probabilitic Model High Resolution Optical Image
摘要目前我们的研究工作是在 863 项目背景下展开的,这个项目的主要目的为快速数字地图自动更新研究开发更有效的技术与方法。本硕士论文主要关注于如下两个问题:单幅高分辨率卫星图像的建筑物识别和两幅高分辨率卫星图像间的建筑物变化检测。本文在对以前遥感图像中物体提取与变化检测技术的分析和总结的基础上,结合项目的应用背景,以北京地区 Quickbird 高分辨率卫星图像为实验数据,围绕建筑物识别与建筑物变化检测进行了研究。本文主要工作及贡献总结如下: 1.提出了基于概率模型的建筑物轮廓识别算法(第三章) 我们通过定义一个概率密度函数并结合相应的特征来表示建筑物,在执行建筑物识别算法的过程中使用了我们提出的剪切-融合算法。通过不断检测建筑物候选轮廓,衡量它们的概率值,并使用融合算法对某些冲突的轮廓进行合并,以最大化候选轮廓的概率值,从而得到最终的建筑物轮廓。这种算法的优点是能够通过概率模型把建筑物的各个特征进行结合;同时这种算法不仅可以应用于建筑物,也可以应用于其它物体的识别。通过在大数据集上的实验,我们展示了算法的性能及其鲁棒性。 2.提出了基于轮廓提取的建筑物变化检测算法(第四章) 基于前一章的建筑物轮廓识别算法,我们提出了新的建筑物变化检测算法。这种算法的主要思想是把两幅图像中物体被检测到的概率和没有被检测到的概率的乘积,作为物体的变化概率。这种算法不需要图像的精确配准。我们在合成图像和真实图像上进行实验,展示了算法的效力。 3.基于 DRF 模型的结构物体变化检测算法(第五章) 为了避免第四章算法中轮廓提取这一主要步骤,我们对已有的 DRF(Discrimative Random Field)模型进行了扩展。通过把物体的变化考虑为时间上的不连续性和空间上的连续性,新的 DRF 模型能够直接处理两幅图像间的变化,而不需要首先提取各个图像中的物体。我们在不同图像上进行了试验,展示了这种算法的潜力。
其他摘要The present work was achieved in the context of a 863 project which aimed at providing robust methods and techniques for fast digital map updating in urban area. The specific objective of this Master thesis is to address the issues of building recognition from a single VHR image and building change inference from a pair of images. This thesis gives at first a general review and analysis of existing methods on object extraction and change retrieval for remote sensing applications (Chapter 2). It then presents in details the newly developed techniques and illustrates results on high resolution Quickbird image covering the area of Beijing. The major achievements and contributions can be summarized as follows: 1. Building contour recognition based on probabilistic model (Chapter 3) We define the building object by its probability density function --a logistic function-- and its data features. Building recognition is performed using a newly developed cut-and-merge algorithm. This original framework enables to alternately and iteratively detect building contour candidates, estimate their likelihood, then merge possible conflicting candidates such as to maximise their probability to be a building. The advantage of this algorithm is that any data feature can be fused in the model; the proposed method is not specific to the building and can be adapted to any object class. The application on a large data set demonstrates the robustness and performance of the technique. 2. Buiding change detection based on contour detection (Chapter 4) We propose a new approach for building change detection based on the building recognition algorithm presented in Chapter 3. The main idea is to compute the change's probability as a product of the probabilities of object detection and object non-detection calculated in each of the image pair. This approach does not require accurate image registration. We illustrate its efficiency on synthetic and real images. 3. Structural object change inference based on DRF model (Chapter 5) In order to avoid the preliminary stage of contour detection as required in Chapter 4, we introduce an extension of the existing DRF (Discrimative Random Field) model. The new DRF cope directly with the pair of images and model the change as a discontinuity in time and continuity in space. We performed application and show the potential of the method.
馆藏号XWLW869
其他标识符200228014603556
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6887
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
刘炜. 基于概率模型的高分辨率卫星图像建筑物识别及变化检测[D]. 中国科学院自动化研究所. 中国科学院研究生院,2005.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘炜]的文章
百度学术
百度学术中相似的文章
[刘炜]的文章
必应学术
必应学术中相似的文章
[刘炜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。