CASIA OpenIR  > 毕业生  > 硕士学位论文
模糊数学在计算机视觉中的应用
赵亮
学位类型工学硕士
导师胡启恒 ; 马颂德
1996-06-01
学位授予单位中国科学院自动化研究所
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
摘要计算机视觉主要研究使视知觉过程自动化的理论和算法。在对视觉信息进行处 理的各个层次(低层视觉、中层视觉和高层视觉)中都包含了大量不确定性因素。 如何适当描述和处理这些不确定性直接关系到计算机视觉算法的计算复杂性、可行 性和鲁棒性。模糊数学作为解决不确定性问题的有力工具,已在许多领域取得了一 批有实际意义的成果,但是在计算机视觉领域中的应用历史尚为短暂,其方法和技 术还远未成熟。针对这一现实,本文研究了将模糊数学应用于计算机视觉中解决不 确定性问题的可行性和方法,特别是对用模糊数学来解决三维建模、直线提取及特 征匹配时的不确定性进行了具体研究,并就研究结果具体应用到了机器人视觉导航 系统的机器人自定位子系统中。 首先,我们利用模糊集合中的一类特殊集合—模糊数来描述三维模型中的几 何基元和图象中特征提取的不确定性。用模糊数描述不确定性的关键是要确定模糊 数的形状。根据三维建模及特征提取中误差产生的原因及误差分布情况,我们选择 梯形模糊数来描述上述不确定性。同时我们对坐标系之间的旋转和平移变换也采用 模糊数表示。这样我们就可以以一致的方式来处理不同坐标系下几何基元的不确定 性及其传播。 特征匹配在计算机视觉中起着重要作用,它也是计算机视觉中最困难的问题之 一。由于特征匹配过程中诸多不确定性因素的影响更增加了其难度。本文提出了用 模糊相似性测度(FSM:Fuzzy Similarity Meastlre)作为衡量两个特征是否对应的 标准。由于模糊相似性测度合理描述并处理了匹配过程中的不确定性因素,兼顾了 特征的局部属性与全局属性,从而大大增加了正确匹配的特征数目并提高了算法的 鲁棒性。 在将上述方法应用到基于模型的机器人视觉导航系统中来解决机器人自定位中 的不确定性问题时,我们首先将三维模型中的几何基元及从图象中提取出的特征参 数模糊化为模糊数,然后建立起基于模糊相似性测度的三维模型与图象特征之间的 对应关系。另外,从人类视觉特点中得到启示,我们利用主动视觉的思想控制摄像 机去积极搜索环境中的路标,并且充分利用先验知识对机器人的位置和图象中的路 标进行预测,从而大大提高了匹配算法的效率。在真实环境下的大量实验及误差分 ,析表明,用模糊数学解决计算机视觉中的不确定性问题是一种行之有效的方法。
其他摘要Computer Vision is the study of theories and algorithms for automating the process of visual perception. Uncertainty abounds in every phase of computer vision. How to express and deal with uncertainty directly affect the computational complexity, applicability and robustness of computer vision algorithms. As a powerful tool for manipulating uncertainty, Fuzzy Mathematics has achieved a high degree of success and popularity in many areas. The history of its application in computer vision, however, is still very short; the methods and techniques are far from being mature. Therefore, the purpose of this paper is to give a deep study of fuzzy approach to computer vision. First, we employ the fuzzy number to deal with the uncertainty in three dimensional modeling and line extracting. While describing the uncertainty with the fuzzy number, the most important thing is to determine the shape of the fuzzy number. According to the source of uncertainties in the above procedures, we select trapezoidal fuzzy number to express the parameters of geometric primitives such as points, lines and planes. For consistent interpretation about geometric primitives between different coordinate frames, we also fuzzify the rotation matrix and translation vector by assigning appropriate fuzzy numbers to the rotation angles and translations. Feature matching plays an important role in computer vision. The ability to solve the correspondence problem reliably and efficiently depends to a great extent on the similarity, measure employed for this matching. To deal with the uncertainty in the matching procedure, we design a fuzzy similarity measure ( FSM ) which computes the possibility function, and decides the correspondence based on it. Fuzzy Similarity Measure takes global attributes as well as local attributes of the features into account, so it greatly increases the correct matching number between 3D model and 2D image features and makes the matching procedure robust. As an application, we employ the above approach in our Vision-Based Robot Navigation System to solve the uncertainty problems in robot self-localization. Besides, we control the camera to search the landmark in the environment actively - the idea of active vision, and we predict the pose of the robot and the appearance of the landmark in the image with a priori knowledge about the movement of the robot. As a result, the speed of matching procedure increases greatly. A large number of experiments in the real indoor environment demonstrate the usefulness of the proposed methodology.
馆藏号XWLW389
其他标识符389
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/7159
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
赵亮. 模糊数学在计算机视觉中的应用[D]. 中国科学院自动化研究所. 中国科学院自动化研究所,1996.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[赵亮]的文章
百度学术
百度学术中相似的文章
[赵亮]的文章
必应学术
必应学术中相似的文章
[赵亮]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。