CASIA OpenIR  > 毕业生  > 硕士学位论文
多机器人运动规划的研究及通用仿真平台的开发
Alternative TitleResearch on Motion Planning of MultiI-Robot Systems and Simulation Platform Development
张斌
Subtype工学硕士
Thesis Advisor谭民
2001-05-01
Degree Grantor中国科学院自动化研究所
Place of Conferral中国科学院自动化研究所
Degree Discipline控制理论与控制工程
Keyword多机器人系统 运动规划 增强式学习 仿真 Multi-robot System Motion Planning Reinforcement Learning Simulation
Abstract随着机器人技术的发展,机器人的能力不断提高,其应用领域不断扩展,人 们要求机器人所完成的任务也越来越复杂,如制造过程的复杂装配作业、空间站 的维修、海洋勘探以及有害废料的清理等。在这些应用中,使用多个功能有限的 机器人远比使用单个功能复杂的机器人要有优势。要使多个机器人构成的系统能 有效地运行,就必须对该系统加以组织。因此,如何组织这样的系统,以及如何 实现多个机器人之间的协调与协作已经成为当前机器人学研究的新课题之一。本 文针对多机器人系统的运动规划和仿真系统建模与实现展开研究工作,主要内容 如下: 首先,本文介绍了多机器人系统的特点,综述了多机器人运动规划和仿真平 台的发展现状,并对论文结构、研究背景做了介绍。 其次,研究了基于行为的分布式运动规划。本文将人工势场法应用于机器人 与静态障碍的避碰算法中,并通过对不同方向的障碍物给与不同权重,改善了静 态环境中单机器人的运动轨迹。本文针对静态环境中的局部极小问题设计了 f0llow_wall行为,并通过引入目标方向角,使机器人能够在更为复杂的环境中避 免陷入局部极小。本文还讨论了机器人之间的避碰问题。通过采用合理的交通规 则,机器人可以灵活地相互躲避。 第三,研究了学习分类器系统在多机器人学习中的应用。为了提高该方法的 收敛速度,本文引入了规则构造器和合并操作。同时,机器人通过通讯共享各自 所发现的最优的规则,以充分利用多机器人系统以及学习分类器算法本身均为并 行系统的特点。仿真结果表明,改进后学习速度大为提高。 第四,研究了多机器人仿真系统的设计和实现。本文根据通用的多机器人仿 真平台所应该具有的特点,采用面向对象模型化技术(Object Modeling Technique, OMT)对多机器人仿真系统进行分析,建立了仿真系统的对象模型,动态模型 和功能模型,并实现了基于该模型的分布式多机器人仿真系统MultiSim (Multi-robot Simulation System)。 最后,论文对所取得的研究成果进行了总结,并阐述了下一步的工作。
Other AbstractWith the development of robotics, the power of robot has been improved and the application areas of robot have been enlarged. Robots are required to accomplish more complex tasks, such as assembly, space station restore, ocean exploration and toxic waste cleanup. To accomplish those tasks, a system that consists of multiple simple robots has more advantages than a single powerful robot. In order to work efficiently, that system should be organized. Therefore, how to realize the coordination and cooper~ation of multiple robots is one of the new issues of robotics. This paper is focused on multi-robot motion planning and the implementation of a genetic simulation platform. The content of this paper goes as follows: Firstly, the features of multi-robot system are described, researches on motion planning and multi-robot simulation are reviewed, and the architecture and background of this thesis are introduced. Secondly, distributed motion planning based on behavior is addressed. Artificial Potential Field approach is applied to the robot to avoid collision with obstacles. By (,living different weight to the obstacles in different directions, the path planned by the robot is improved. To solve the problem of minimum in environment, follow_wall behavior is introduced, and by introducing Goal Angle, the robot can easily get out of minimum in more complex environment. Collision avoidance between robots is also discussed in this paper. By exploiting reasonable traffic rules, robots are able to avoid each other agilely. Thirdly, Learning Classifier System (LCS) is applied to multi-robot systern. To improve the speed of LCS, Rule Constructor and Merge operation are introduced. In addition, robots shared the optimal rules by communication among them, by which the parallel features of both multi-robot system and LCS are exploited. The simulation results show that the speed of LCS is improved. Fourthly, the design and implementation of multi-robot simulation system are studied. The object model, dynamic model and function model of simulation system are built by exploiting Object Modeling Technique (OMT) and a distributed genetic multi-robot simulation platform is developed on the base of those models. Finally, a conclusion is given and future work is addressed.
shelfnumXWLW594
Other Identifier594
Language中文
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/7329
Collection毕业生_硕士学位论文
Recommended Citation
GB/T 7714
张斌. 多机器人运动规划的研究及通用仿真平台的开发[D]. 中国科学院自动化研究所. 中国科学院自动化研究所,2001.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张斌]'s Articles
Baidu academic
Similar articles in Baidu academic
[张斌]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张斌]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.