CASIA OpenIR  > 毕业生  > 硕士学位论文
基于CLIPS的煤气净化流程故障诊断专家系统的研究
Alternative TitleA study for CLIPS-based fault diagnosis expert system for the process of gas purification
谢家贵
Subtype工学硕士
Thesis Advisor马增良
2010-05-27
Degree Grantor中国科学院研究生院
Place of Conferral中国科学院自动化研究所
Degree Discipline控制理论与控制工程
Keyword故障诊断 与或功能树 故障征兆-原因矩阵 故障树 专家系统 面向对象 Clips Fault Diagnosis Function Tree Fault Symptom-case Matrix Fault Tree Expert System Object Oriented Clips
Abstract随着现代工业的发展,企业对复杂系统和设备的需求进一步增加,设备管理成为企业的一大难题。作为设备管理重要的一部分——设备故障诊断越来越受到企业的重视,如何维护好这些复杂的设备系统,确保工作过程的安全性,避免设备故障的发生,就成了设备故障诊断的重大研究课题。设备故障诊断是一门综合信息学、材料学、机械学、计算机技术、模式识别等多学科的综合技术,尤其随着人工智能科学的发展,智能诊断算法慢慢应用于故障诊断,在设备故障诊断中发挥着越来越重要的作用。应用先进的故障诊断技术可以及时发现系统故障,避免和预防恶性事故发生,降低企业维修成本。因此,研究先进的故障诊断技术对于现代企业具有重要的经济意义和实用价值。 本学位论文结合作者的知识背景以及煤气净化的工艺流程中设备运行的环境、特点,具体研究了流程中各独立设备的诊断算法以及工艺流程的诊断算法,结合CLIPS专家系统平台,设计了基于CLIPS的煤气净化流程设备故障诊断专家系统。全文主要内容如下: 第一章主要讲述了论文的选题背景及意义,阐述了设备故障诊断的目的及内容,以及设备故障诊断技术的发展、研究现状和水平;分析了国内外煤气净化流程中设备故障诊断的研究现状和水平,人工智能在设备故障诊断中的应用;讲述了基于CLIPS专家系统的发展、研究现状及水平,以及目前故障诊断面临的问题;最后给出了论文的研究目标和主要内容。 第二章主要讲述了基于布尔代数的与或功能树在故障诊断中的应用,以及基于布尔矩阵的故障征兆——原因矩阵的诊断模型。提出了基于与或功能树建立设备的布尔函数,基于布尔函数建立征兆——原因矩阵的方法。 第三章主要讲述了故障树的基本概念及其在设备故障诊断中的应用。首先研究了在煤气净化流程中,流程诊断算法模型。最后结合第二章的故障征兆——原因矩阵,给出了故障树模型的专家诊断推理模型。 第四章主要讲述了基于CLIPS的煤气净化流程故障诊断专家系统的设计与实现中的软件工程方法及其接口技术,CLIPS专家平台的基本概念和语法以及CLIPS如何嵌入到其他高级语言的技术。最后给出了专家系统外壳、中文编辑外壳的设计与实现。 第五章对本论文所做的工作以及需进一步改进提高的方面进行了总结,并对本研究方向进行了展望。
Other AbstractWith the development of modern industry, enterprises further increase the demands of complex systems and equipments; device management becomes the major business challenge. As an important part of the device management - Fault Diagnosis gets more and more attention by the enterprises, how to protect the equipment of these complex systems to ensure the safety of the working process, to avoid the incidence of equipment failure, it becomes a major research subject about equipment fault diagnosis. Fault diagnosis integrates information science, materials science, mechanics, computer technology, pattern recognition, particularly with the development of artificial intelligence, intelligent diagnosis gradually applied to fault diagnosis; it is playing an increasingly important role in fault diagnosis. Apply of the advanced technology to detect fault diagnosis, to avoid and prevent fatal accidents, reduce the business cost of maintenance. Therefore, the study of fault diagnosis of advanced technology for modern enterprise has great economic significance and practical value. This dissertation combines the author's knowledge and the background of the process of gas purification equipment operation environment, characteristics; specifically study the self-equipment diagnostic algorithm and algorithm of the diagnosis process, combined with CLIPS expert system platform, design the system of “CLIPS-based equipments fault diagnosis expert system for the process of gas purification.” The main text of the following: Chapter one describes the research background, and the significance of paper, explains the purpose and contents of the fault diagnosis, and the fault diagnosis technology, research status and level; analyses of the gas purification process fault diagnosis technology research status and the level in domestic and foreign, and the application of artificial intelligence in the equipment fault diagnosis; describes the development of CLIPS-based fault diagnosis expert system’s research status and level, and the current faced problems in expert system. Finally, gives the paper's research objectives and main content. Chapter two describes the Boolean algebra based function tree’s application in fault diagnosis and the Boolean based Fault symptom-case matrix diagnosis model. Propose the function tree based method to set up the Boolean function of the equipment, and based on Boolean function to establish the Fault symptom-case matrix. Chapter three describes th...
shelfnumXWLW1548
Other Identifier200728014628088
Language中文
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/7519
Collection毕业生_硕士学位论文
Recommended Citation
GB/T 7714
谢家贵. 基于CLIPS的煤气净化流程故障诊断专家系统的研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2010.
Files in This Item:
File Name/Size DocType Version Access License
CASIA_20072801462808(1079KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[谢家贵]'s Articles
Baidu academic
Similar articles in Baidu academic
[谢家贵]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[谢家贵]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.