CASIA OpenIR  > 毕业生  > 硕士学位论文
网络化机器人系统下的目标跟踪与追捕研究
Alternative TitleResearch on Target Tracking and Pursuit with Network Robot System
石坤
Subtype工学硕士
Thesis Advisor曹志强
2011-05-28
Degree Grantor中国科学院研究生院
Place of Conferral中国科学院自动化研究所
Degree Discipline控制理论与控制工程
Keyword网络化机器人系统 目标定位 跟踪 追捕 混合无线传感器网络 Network Robot System Target Localization Tracking Pursuit Hybrid Wireless Sensor Network
Abstract随着机器人应用领域的不断拓展,机器人系统有时仅靠自身感知无法满足日益复杂的任务和环境需求。网络化机器人系统通过与环境的交互扩展机器人系统的感知能力,受到普遍重视,已经成为机器人学的重要研究方向之一。本文针对网络化机器人系统下的目标跟踪与追捕问题开展研究,主要内容如下: 首先,本文综述了网络化机器人系统的研究现状,对多机器人系统、机器人定位和无线传感器网络进行了简要介绍,并对论文的选题背景和结构安排做了介绍。 其次,提出了一种网络化机器人系统框架,包括控制台、服务器单元和多机器人系统三部分,其中服务器单元作为环境智能的提供者。控制台、服务器单元与多机器人系统通过无线局域网联系起来,服务器单元与控制台之间还可通过有线局域网进行信息传送。 第三,开展了室内环境下基于固定摄像机的目标定位研究,提出采用BP神经元网络建立图像中移动物体信息与其实际位置的映射,实现了室内环境下物体的粗定位;对多摄像机下的目标定位进行了研究。 第四,研究了网络化机器人系统下目标追捕问题。控制台基于电子地图、服务器单元基于视觉定位为机器人提供任务相关信息,在此基础上,机器人结合自身码盘、电子罗盘和超声信息进行运动决策,实现目标追捕。 第五,设计一种基于区域划分和动态静态节点混合无线传感器网络的多机器人目标追捕方法。开展静态节点和动态节点混合网络布局研究。考虑到静态节点、感知空洞和多区域的情况,采用动态跟踪簇、联合目标跟踪策略实现对目标的有效跟踪。在此基础上,用户层综合各区域目标信息进行任务分配与调度,机器人进而根据多区域环境下的目标追捕策略执行任务。 最后,论文对所取得的研究成果进行了总结,并阐述了下一步的工作。
Other AbstractWith the expansion of robotic applications, sometimes the robotic system with local sensing can not meet the increasing complexity demand of tasks and environments. Network robot system may expand the sensing ability of robotic system by interacting with environments, which has become one of important research directions and received many attentions. This thesis focuses on target tracking and pursuit with network robot system. The main contents are as follows: Firstly, the research development of network robot system is presented. The multiple robots system, robot localization and wireless sensor network are introduced briefly. The background and structure of this thesis are also given. Secondly, a framework for network robot system is given. The framework is composed of three parts: console, server units and multi-robot system, and the server units are the provider of environment intelligence. These three parts can interact by WLAN, and the server units and console may also transfer information by LAN. Thirdly, the research on target localization of moving object based on fixed CCD camera in indoor environments is conducted. The BP neural network is used to map the information of target in image into the target’s position, which may achieve the rough localization. Also, target localization based on multi-camera is discussed. Fourthly, the target pursuit with network robot system is conducted. The console with electronic map and server unit with visual localization supply the task-related information to robots. On this basis, the robot makes decision with encoders, electronic compass and sonar information to achieve target pursuit. Fifthly, we design a target pursuit approach for multi-robot system in a multi-region workspace with the help of hybrid wireless sensor network that comprises static sensor nodes and mobile sensor nodes. The layout of hybrid wireless sensor network is presented. Considering static nodes, hollow zones and multi-region, the dynamic cluster and cooperative target tracking strategy are adopted to track the targets. On this basis, the user layer allocates the task based on targets information from the regions, and the robots execute the task with multi-region target pursuit strategy. Finally, the conclusions are given and future work is addressed.
shelfnumXWLW1632
Other Identifier200828014628012
Language中文
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/7574
Collection毕业生_硕士学位论文
Recommended Citation
GB/T 7714
石坤. 网络化机器人系统下的目标跟踪与追捕研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2011.
Files in This Item:
File Name/Size DocType Version Access License
CASIA_20082801462801(4298KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[石坤]'s Articles
Baidu academic
Similar articles in Baidu academic
[石坤]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[石坤]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.