CASIA OpenIR  > 毕业生  > 硕士学位论文
基于子空间和迁移学习的目标跟踪
其他题名Object Tracking Based on Subspace and Transfer Learning
罗文寒
学位类型工学硕士
导师胡卫明
2012-06-02
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词视觉监控 多目标跟踪 子空间 遮挡处理 表观分块 迁移学习 Boosting Visual Surveillance Multiple Object Tracking Subspace Occlusion Handling Appearance Division Transfer Learning Boosting
摘要目标跟踪在运动目标的视觉分析中占有重要的地位,属于视觉的中层部分。利用目标的跟踪,可以方便地获得目标的运动、姿态、行为参数,为后续高层的行为识别和理解奠定基础。目标跟踪虽然是计算机视觉领域一个重要的研究方向和研究热点,但是目前仍然有很多理论与技术问题有待解决,特别是跟踪过程中噪音干扰、运动模糊、光照变化、遮挡等复杂问题的解决。 本文的工作以视觉监控场景下的目标鲁棒跟踪为目标,分别在以下两个问题上进行了深入的探讨和分析:(1)移动摄像机底下多目标跟踪的遮挡处理问题;(2)基于迁移学习的目标跟踪。大量的实验表明我们方法的有效性和鲁棒性。论文的主要工作和贡献如下: (1)引入了基于分块的表观模型来解决多目标跟踪中的遮挡问题。该模型对表观进行了空间层面的分块,分别对各个分块建立各自的表观模型,由此各个分块独立计算似然度,同时,候选者的整体似然度又由其各个分块与目标的各个分块模型的似然度累乘起来,由此隐含地引入了空间信息。更重要的是,该分块模型对于遮挡推理和表观更新具有重要的意义。正是由于对表观进行了分块,我们可以区别性的对待目标被遮挡的部分和没被遮挡的部分,从而能够很好地处理遮挡问题。 (2)提出了选择性的表观更新策略来解决多目标跟踪里面出现的遮挡导致的表观更新难题。一般而言,跟踪过程中目标的表观模型必须得对表观变化进行学习,但是当目标被遮挡的时候,如果强制性的对目标的表观模型进行更新,将不可避免地引入噪声,这些噪声在目标离开遮挡的时候必然导致跟踪失败。我们提出的选择性的表观更新策略是基于分块的表观模型的。由于对表观进行了分块,我们能够得到关于分块是否被遮挡的信息,由此,我们选择只更新那些没被遮挡的分块的表观变化而对被遮挡的分块的表观模型保持不变,这种对各分块进行区别性对待的策略能够有效地学习目标被遮挡阶段表观发生的一些变化,同时还能避免整体更新引入的错误。 (3)创新性地将迁移学习应用于目标跟踪,提出了一个基于Boosting的在线训练框架来进行目标跟踪。跟踪过程当中目标和背景的变化形成了一个问题,对于基于分类器的方法来说,训练样本和测试样本在特征空间的分布很可能不一致,而这个情况不符合传统的机器学习算法要求的训练样本和测试样本必须在特征空间上分布一致的假设,这就意味着传统的机器学习算法不太适合于处理这种问题。迁移学习由于没有这样的假设,特别适合这个问题。在我们提出的基于Boosting的框架里面,分类器的更新分成两个阶段,第一个阶段根据 传统的方法进行训练,第二个阶段根据最新的训练样本对前一阶段的分类器进行修正,通过这个过程,使得分类器能将源域(老的训练数据所在的域)的知识迁移学习到目标域(新的训练样本所在的域),使之更适合于执行对新测试样本的分类任务,也就是跟踪任务。
其他摘要Object tracking, an intermediate-level vision part, plays an important role in visual analysis and understanding of object motion. The goal of object tracking is to detect, localize and track moving objects in videos. By visual tracking, we obtain the motion parameters, the poses and the trajectories of objects, which lays a solid foundation for the high-level activity recognition and understanding. Although object tracking is really a hot research topic in recent years, there do exist many theoretical and technical problems, especially in the cases of noise, motion blurring, illumination changes, occlusion etc. In this thesis, we aim at tracking object robustly in visual surveillance application. Two topics are investigated in details: (1) occlusion handling under mobile camera in multiple object tracking; (2) objecting tracking based on transfer learning. Experimental results have demonstrated the effectiveness and robustness of our method. The main contribution of this thesis include following issues: (1) We introduce a block-division based appearance model for occlusion handling in multiple object tracking problem. This appearance model divides the object into blocks at the level of space, models each of the block respectively, thus computes each block's likelihood independently. At the same time, the likelihood of an special candidate is calculated by multiplying each block's likelihood between it and its corresponding model, therefore introducing spatial information implicitly. Furthermore, the block-division based appearance model means importance to occlusion reasoning and appearance updating in the following stage. It is just because of division of appearance that we can treat the part of object which is not occluded and the occluded part discriminatively, which facilitates occlusion handling in the following. (2) We propose a selective appearance model updating strategy to deal with the appearance model updating which results from occlusion between multiple objects. Generally speaking, appearance model should learn the variety of object during tracking. However, if this learning process is still carried out when the object is occluded, it will definitely introduce noises. This type of noises would probably lead to failure of tracking. The selective updating strategy we proposed is based on the block-division appearance model. As the object is divided into blocks, we can obtain information about whether the block is occluded or not. Thus, w...
馆藏号XWLW1768
其他标识符200928014628013
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/7641
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
罗文寒. 基于子空间和迁移学习的目标跟踪[D]. 中国科学院自动化研究所. 中国科学院研究生院,2012.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20092801462801(2845KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[罗文寒]的文章
百度学术
百度学术中相似的文章
[罗文寒]的文章
必应学术
必应学术中相似的文章
[罗文寒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。