CASIA OpenIR  > 毕业生  > 硕士学位论文
工业蒸汽系统经济优化研究与应用
其他题名Industrial Steam System Economic Optimization Research and Application
陈国香
学位类型工学硕士
导师曾隽芳 ; 王学雷
2013-05-24
学位授予单位中国科学院大学
学位授予地点中国科学院自动化研究所
学位专业计算机应用技术
关键词蒸汽系统 混合整数非线性规划 分枝定界法 遗传算法 优化软件 Steam System Mixed Integer Nonlinear Programming (Minlp) Branch And Bound Method Genetic Algorithm Optimization Software
摘要蒸汽系统是钢铁石化等工业企业的重要组成部分,它消耗燃料,为整个生产过程提供蒸汽、电力、冷却水等公用工程。蒸汽系统的安全稳定运行是企业安全、稳定、长周期运行的基础。蒸汽的系统的设计水平、设备运行和优化控制对企业能否合理利用能源也具有重要的影响。通过研究蒸汽系统的结构特性,对其建立优化模型,进行操作调优,可以为企业节能降耗,提高经济效益。 蒸汽系统是一种典型的过程工业,学者们多使用综合集成、数学规划和启发式等方法来研究过程工业的优化问题。数学规划方法是建立在工况模拟基础上的一种优化的方法,只要针对蒸汽系统所建立的模型准确、求解方法可靠,数学规划方法对于企业优化就很有实用性。本文使用数学规划方法对蒸汽系统经济优化方面的工作主要有以下几个方面。 本文分析了蒸汽系统的特点,将蒸汽系统的设备(包括锅炉、汽轮机、减温减压站、放空阀等)分为辅助设备(通用设备)和工艺设备,针对每个设备的结构和工况特点,对蒸汽系统建立混合整数非线性规划(MINLP)数学模型。通过联立方程组来表示蒸汽系统中各类产汽量、用汽量及输汽设备之间的关系,把能源消耗费用最低或者企业的经济利润最大作为系统的目标函数,并满足关于设备的负载、燃料选用及特性、蒸汽及电量的产量等约束条件,采用混合整数非线性规划方法来求解蒸汽系统优化运行方案。 本文分析了混合整数非线性规划模型的常见的求解方法,分别从数学求解的角度和启发式算法的角度,详细阐述了分枝定界法和遗传算法来求解混合整数非线性规划模型的思路。并通过某煤化工企业的实例,利用这两种方法进行仿真实验,并根据实验结果验证模型的正确性,分析和对比这两种方法的优缺点和适用条件。 设计蒸汽系统优化软件,将本文的模型和求解策略以工程化的方式展现给企业的管理和操作人员。从而更加方便、直观的建立模型,也提高了模型的实用性。设计优化软件也能使得本文的技术能在工程中不断得到验证,从而有效帮助企业管理人员及时的调整优化方案,使蒸汽系统处于优化运行的状态,从而为企业取得可观的经济效益。
其他摘要The steam system is an important part of the iron and steel, petrochemical, and other industrial enterprises; it consumes fuels such as coals, and provides steam, electricity, cooling water and other public works for the entire production process. The safe and stable operation of the steam system is the basic requirement of the safe, stable and long term operation for the whole enterprises. The level of design, operation of equipment and optimal control of the steam system has an important impact on rational use of energy for the enterprises. Studying on the structure, characteristics of the steam system, establishing optimization model of the steam system, and adjusting production plan can reduce energy consumption and bring considerable economic benefits for the enterprise. The steam system is a typical process industry. Scholars generally use integrated mathematical programming and heuristic methods to study the optimization problem of the process industry. Mathematical programming method is an optimization method that based on condition simulation, as long as the model for the steam system is accurate, the solution for the model is reliable, mathematical programming method is very practical for enterprises to optimize. In this paper, the work of the economic optimization of the Steam System is as follows. In this article, I analyze the characteristics of the steam system and sort the equipment of the steam system (including boilers, turbines, temperature and pressure reduction stations, vent valve, etc.) into the auxiliary equipment (common equipment) and process equipment. Then I establish a mixed integer nonlinear programming (MINLP) mathematical model for the steam system according to the structure and condition features of each device. Then represent the relationship among the amount of the steam output, steam consummation and the steam delivery device through simultaneous equations. The objective function of optimization of the system is to fulfill the requirement of the lowest energy consumption costs or the biggest enterprise's economic profit, and to meet equipment load, fuel selection and characteristics, steam and electricity production constraints. In the end, we use of mixed integer nonlinear programming method to solve the optimization problem of the steam system. This paper analyzes the common method for solving mixed integer nonlinear programming model, from the point of view of the mathematical and heuristic algorithm, elaborated o...
馆藏号XWLW1904
其他标识符201028014628028
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/7677
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
陈国香. 工业蒸汽系统经济优化研究与应用[D]. 中国科学院自动化研究所. 中国科学院大学,2013.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20102801462802(1283KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈国香]的文章
百度学术
百度学术中相似的文章
[陈国香]的文章
必应学术
必应学术中相似的文章
[陈国香]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。