CASIA OpenIR  > 毕业生  > 硕士学位论文
缩微智能车交通标志检测与识别方法研究
其他题名Research on Methods of Traffic Sign Detection and Recognition for Intelligent Car-like Robots
孙涛
学位类型工程硕士
导师汤淑明
2013-05-20
学位授予单位中国科学院大学
学位授予地点中国科学院自动化研究所
学位专业控制工程
关键词交通标志检测 交通标志识别 Haar特征 深度学习 Traffic Sign Detection Traffic Sign Recognition Haar Feature Deep Learning
摘要国家自然科学基金委员会于2011年发布“视听觉信息的认知计算”重大研究计划项目指南,在“无人驾驶车辆方面”设立基础研究类培育项目“多缩微车交互与智能交通模拟”,要求“在三维缩微交通道路场景下,利用80辆以上不同比例的缩微车群,形成多路口、多车道与异构车群组成的交通流,模拟局部城市交通流状况,研究多智能车交互行为认知模型及相应的调控方法,为大型无人驾驶车辆多车交互及城市智能交通提供基本理论依据或技术支撑。”缩微智能车交通标志检测与识别方法研究是多智能车交互行为认知模型的基础和关键问题之一,相关研究成果不仅可为大型无人驾驶车辆多车交互研究提供借 鉴和参考,而且对我国过无人驾驶车辆技术的发展和进步也将有着重要的促进和推动作用。 相比于无人驾驶车辆,缩微智能车具有体积小、成本低,开发周期短的优点,但是由于其制造材料多为塑料,承重能力有限,其车载的图像传感器和计算处理器的性能较差,本论文主要针对缩微智能车在采集和处理能力有限的情况下,研究低分辨率、低质量时,快速进行交通标志检测与识别的方法。论文的主要工作和贡献包括: 1 针对颜色分割阈值难于选取的问题,论文提出使用样本数据生成颜色模板的方法,改善了颜色分割不准确的问题;针对遮挡情况,设计了基于不变矩和圆检测的二级形状匹配系统,分别用于快速检测无遮挡和部分遮挡情况下的交通标志,提高了检测命中率。 2 针对颜色分割在分辨率较低情况下易漏检的问题,提出了使用Haar特征检测圆形标志的外轮廓的方法,并通过引入色调积分图实现了小尺寸下交通标志的快速定位,处理一张分辨率为320X240图片的平均用时仅为20ms。 3 针对层数少的神经网络分类效果差,而层数多的神经网络难于训练的问题,论文将深度学习应用于交通标志分类;同时为了应对误检测,论文将非交通标志图像作为负类引入训练过程,在自建数据集上达到了99.91%的正确率,在公开数据集上达到了95.9%的正确率,平均分类时间为2.1ms。 4 设计并实现了缩微智能车交通标志检测和识别系统,并针对运行环境对论文中的方法进行调整和简化,提高了系统的处理速度,在有15支队伍参加的“全国缩微智能车竞赛”中取得了第三名的成绩。
其他摘要In 2011, the National Natural Science Foundation of China released application instructions of the major research plan `Cognitive Computing of Visual and Auditory Information`. In unmanned autonomous vehicles (UAV) research field, a basic research cultivation project named `multi car-like robot interaction and intelligent transportation simulation` was involved in this plan. The project required that `In three-dimensional miniature urban traffic environments, more than 80 car-like robots with different sizes and heterogeneous vehicle groups form traffic flows on traffic intersections and multi-lanes to simulate urban traffic conditions. Therefore, researches on interactive behavior, cognitive model of multi intelligent vehicles, and corresponding control methods can be conducted. Such researches will provide basic theory and technical supports for researches and development of interactions of unmanned intelligent vehicles and urban intelligent transportation.` The methods of traffic sign detection and recognition are basis and one of the key issues of the interactive behavior cognitive model of multi-intelligent vehicles. Their research findings can not only be taken as references for the interactive researches of UAV, but also promote the development of UAV technologies. Compared to UAV, intelligent car-like robots have the advantages of small size, low cost, and short development cycle. However, their load capacity is limited because they are made of plastic materials. Since they can not carry heavier or larger devices, the performance of their loaded image sensor and processors is low. To take the challenge of undesired conditions that the resolutions and quality of images are low and the processing capacity is limited, this thesis is focused on studying methods of traffic sign fast detection and recognition methods. The main contributions are as follows: Usually, it is hard to select an appropriate threshold for color segmentation. In order to address this problem, this thesis proposes a method based on color template mask generated from sample data. Experimental results show that this method has improved accuracy rate of color segmentation. For the problem of occlusion, this thesis designs a shape matching system with two levels based on moment invariants and circle detection. Due to these two level treatments which aim to fast detection of non-occlusion and part occlusion traffic signs respectively, the overall det...
馆藏号XWLW1958
其他标识符2010e8014668002
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/7698
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
孙涛. 缩微智能车交通标志检测与识别方法研究[D]. 中国科学院自动化研究所. 中国科学院大学,2013.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_2010e801466800(4869KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙涛]的文章
百度学术
百度学术中相似的文章
[孙涛]的文章
必应学术
必应学术中相似的文章
[孙涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。