CASIA OpenIR  > 毕业生  > 硕士学位论文
高分辨率遥感图像目标检测技术研究
其他题名Research on Object Detection in High Resolution Remote Sensing Images
瞿神全
学位类型工学硕士
导师潘春洪
2015-05-22
学位授予单位中国科学院大学
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词高分辨率遥感图像 车辆检测 卷积神经网络 目标量 稀疏自编码 器 High-resolution Remote Sensing Images Vehicle Detection Convolutional Neural Network Objectness Sparse Autoencoder
摘要随着海量高分辨率遥感图像数据的出现,如何快速有效地从遥感图像中提 取人们所需要的信息已经日益成为一个迫切的问题。其中遥感图像机动目标检 测在很多应用中有广泛需求,如军事安全,城市规划,城市导航等。高分辨率 图像相对于中低分辨率图像可以提供更多的细节信息,有利于得到更加精准的 检测结果。因此,近年来高分辨率遥感图像目标检测受到了广泛的关注。最近 十几年提出了很多方法解决这个问题,但是没有一个快速、高准确率而且鲁棒 的方法。因此,迫切需要对其进行理论和算法方面的研究。 本文首先分析了高分辨率遥感图像机动目标检测的几个难点,并对现有目 标检测方法进行了系统的总结。针对已有遥感图像目标检测方法在搜索定位、 特征提取和分类方面的不足,本文提出了一种有效的遥感图像目标检测方法。 然后在此基础上提升并改进了该目标检测方法。本文的主要工作和贡献如下: 1. 我们提出一种自动并且高效的遥感图像车辆检测方法。该方法能在检测 的速度和准确率上并重,我们提出的方法由两个阶段组成: (1) 针对我们的遥感图像车辆检测问题,我们首先用改进的规范化二进制 梯度(binary normed gradients, BING)提取候选区域,这样可以在保证 极高目标检测率(detection rate, DR)的情况下快速定位车辆候选区域, 并且通过减少了需要搜索的空间而大大提升了后续分类的计算效率。 (2) 为了提高遥感图像车辆候选区域分类的鲁棒性和准确率,我们选择使 用卷积神经网络(convolutional neural network,CNN)完成特征提取和分 类。在实验中,我们选择利用优秀的深度学习开源框架——Caffe 来实现 我们的卷积神经网络,并且在图像计算单元(Graphics Processing Unit, GPU)上加速计算,也取得了很好的实验效果。 后续实验结果表明,与目前最好的方法相比,我们所提出的方法在检测 速度和准确率两方面均有很明显的优势。 2. 我们提出将稀疏性约束加入上面我们提出的高分辨率遥感图像车辆检测 方法中。通常卷积神经网络权值的初始化是随机初始化,我们通过使用稀疏自编码器(sparse autoencoder)对卷积神经网络进行预训练,所以 通过加入稀疏性约束,我们让卷积神经网络有了更好的初始权值。通过 对比实验也证明我们这种方法确实有助于提高车辆检测的准确率。
其他摘要With the easy access of massive high-resolution remote sensing images, it has been an urgent problem that how to quickly and efficiently extract useful information we need from these images. One of the most important problems in this field is vehicle detection from remote sensing images, which has extensive applications, such as military security, urban planning, and urban navigation, etc. Compared with low- and median-resolution remote sensing images, high-resolution remote sensing images provide more details about the earth surface, which enables us to get more accurate vehicle detection results. Therefore, Automatic vehicle detection from high-resolution remote sensing images plays a fundamental role in a wide range of applications. However, although various approaches have been proposed to address this issue in the last decades, a fast and robust approach has not been found yet. As a consequence, it is of urgent demand to develop methods and algorithms for vehicle detection from high-resolution remote sensing images. In this thesis, we analyze the difficulties of object detection in remote sensing images and summarize various methods. To overcome the disadvantages of the existing methods in object search and location, feature extraction and classification in remote sensing images, we propose an efficient method based on deep neural networks. The main contributions of this thesis are highlighted as follows: 1. We propose a simple and efficient approach to automatically detect vehicles in remote sensing images. The proposed model lays emphasis on both speed and accuracy of vehicle detection. It consists of two stages: (1) Thenewly proposed binary normed gradients (BING) is employed to extract reliable region proposals with the purpose of speeding up localization. (2) To enhance the robustness and improve the accuracy rate, we adopt convolutional neural network (CNN) to achieve the goal of feature extraction and classification. Based on the popular open source of CNN framework, Caffe, we design our own CNN architecture. Moreover, the graphics processing unit (GPU) is used to speed up the training of our model. In comparison with the start-of-the-art methods in extensive experiments, we demonstrate that the proposed approach outperforms in terms of both speed and accuracy, thus its effectiveness is verified. 2. We further propose to incorporate sparse constraints into the above mentioned approach for object detection in remote sensing images. Instead o...
其他标识符201228014628038
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/7773
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
瞿神全. 高分辨率遥感图像目标检测技术研究[D]. 中国科学院自动化研究所. 中国科学院大学,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20122801462803(7398KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[瞿神全]的文章
百度学术
百度学术中相似的文章
[瞿神全]的文章
必应学术
必应学术中相似的文章
[瞿神全]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。