DE2: Dynamic ensemble of ensembles for learning nonstationary data
Yin, Xu-Cheng1; Huang, Kaizhu2; Hao, Hong-Wei3
2015-10-01
发表期刊NEUROCOMPUTING
卷号165页码:14-22
文章类型Article
摘要Learning nonstationary data with concept drift has received much attention in machine learning and been an active topic in ensemble learning. Specifically, batch growing ensemble methods present one important direction for dealing with concept drift involved in nonstationary data. However, current batch growing ensemble methods combine all the available component classifiers only, each trained independently from a batch of non-stationary data. They simply discard interim ensembles and hence may lose useful information obtained from the fine-tuned interim ensembles. Distinctively, we introduce a comprehensive hierarchical approach called Dynamic Ensemble of Ensembles (DE2). The novel method combines classifiers as an ensemble of all the interim ensembles dynamically from consecutive batches of nonstationary data. DE2 includes two key stages: component classifiers and interim ensembles are dynamically trained; and the final ensemble is then learned by exponentially-weighted averaging with available experts, i.e., interim ensembles. Moreover, we engage Sparsity Learning to choose component classifiers selectively and intelligently. We also incorporate the techniques of Dynamic Weighted Majority, and Learn(++).NSE for better integrating different classifiers dynamically. We perform experiments with two benchmark test sets in real nonstationary environments, and compare our DE2 method to other conventional competitive ensemble methods. Experimental results confirm that our approach consistently leads to better performance and has promising generalization ability for learning in nonstationary environments. (C) 2015 Elsevier B.V. All rights reserved.
关键词Ensemble Of Ensembles Growing Ensemble Sparsity Learning Nonstationary Environment Concept Drift Incremental Learning
WOS标题词Science & Technology ; Technology
关键词[WOS]WEIGHTED-MAJORITY ; NEURAL-NETWORKS ; CLASSIFIER ENSEMBLES ; CONCEPT DRIFT ; ENVIRONMENTS ; ALGORITHM ; TRACKING ; SUPPORT ; MEMORY
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000356747700003
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/7904
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位1.Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Dept Comp Sci & Technol, Beijing 100083, Peoples R China
2.Xian Jiaotong Liverpool Univ, Dept Elect & Elect Engn, Suzhou 215123, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yin, Xu-Cheng,Huang, Kaizhu,Hao, Hong-Wei. DE2: Dynamic ensemble of ensembles for learning nonstationary data[J]. NEUROCOMPUTING,2015,165:14-22.
APA Yin, Xu-Cheng,Huang, Kaizhu,&Hao, Hong-Wei.(2015).DE2: Dynamic ensemble of ensembles for learning nonstationary data.NEUROCOMPUTING,165,14-22.
MLA Yin, Xu-Cheng,et al."DE2: Dynamic ensemble of ensembles for learning nonstationary data".NEUROCOMPUTING 165(2015):14-22.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yin, Xu-Cheng]的文章
[Huang, Kaizhu]的文章
[Hao, Hong-Wei]的文章
百度学术
百度学术中相似的文章
[Yin, Xu-Cheng]的文章
[Huang, Kaizhu]的文章
[Hao, Hong-Wei]的文章
必应学术
必应学术中相似的文章
[Yin, Xu-Cheng]的文章
[Huang, Kaizhu]的文章
[Hao, Hong-Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。