Partial Face Recognition: Alignment-Free Approach
Liao, Shengcai1,2; Jain, Anil K.3; Li, Stan Z.1,2
2013-05-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号35期号:5页码:1193-1205
文章类型Article
摘要Numerous methods have been developed for holistic face recognition with impressive performance. However, few studies have tackled how to recognize an arbitrary patch of a face image. Partial faces frequently appear in unconstrained scenarios, with images captured by surveillance cameras or handheld devices (e.g., mobile phones) in particular. In this paper, we propose a general partial face recognition approach that does not require face alignment by eye coordinates or any other fiducial points. We develop an alignment-free face representation method based on Multi-Keypoint Descriptors (MKD), where the descriptor size of a face is determined by the actual content of the image. In this way, any probe face image, holistic or partial, can be sparsely represented by a large dictionary of gallery descriptors. A new keypoint descriptor called Gabor Ternary Pattern (GTP) is also developed for robust and discriminative face recognition. Experimental results are reported on four public domain face databases (FRGCv2.0, AR, LFW, and PubFig) under both the open-set identification and verification scenarios. Comparisons with two leading commercial face recognition SDKs (PittPatt and FaceVACS) and two baseline algorithms (PCA+LDA and LBP) show that the proposed method, overall, is superior in recognizing both holistic and partial faces without requiring alignment.
关键词Partial Face Recognition Alignment Free Keypoint Descriptor Sparse Representation Open-set Identification
WOS标题词Science & Technology ; Technology
关键词[WOS]PARTIAL OCCLUSION ; ROBUST ; SELECTION ; MODELS ; SCALE ; REPRESENTATION ; FEATURES ; SPARSE ; IMAGES
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000316126800013
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/7948
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.Chinese Acad Sci, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Ctr Biometr & Secur Res, Inst Automat, Beijing 100190, Peoples R China
3.Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
推荐引用方式
GB/T 7714
Liao, Shengcai,Jain, Anil K.,Li, Stan Z.. Partial Face Recognition: Alignment-Free Approach[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2013,35(5):1193-1205.
APA Liao, Shengcai,Jain, Anil K.,&Li, Stan Z..(2013).Partial Face Recognition: Alignment-Free Approach.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,35(5),1193-1205.
MLA Liao, Shengcai,et al."Partial Face Recognition: Alignment-Free Approach".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 35.5(2013):1193-1205.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liao, Shengcai]的文章
[Jain, Anil K.]的文章
[Li, Stan Z.]的文章
百度学术
百度学术中相似的文章
[Liao, Shengcai]的文章
[Jain, Anil K.]的文章
[Li, Stan Z.]的文章
必应学术
必应学术中相似的文章
[Liao, Shengcai]的文章
[Jain, Anil K.]的文章
[Li, Stan Z.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。