CASIA OpenIR  > 脑网络组研究中心
Active shape model segmentation using local edge structures and AdaBoost
Li, SY; Zhu, LT; Jiang, TZ; Yang, GZ; Jiang, T
2004
发表期刊MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS
卷号3150页码:121-128
文章类型Article
摘要The paper describes a machine learning approach for improving active shape model segmentation, which can achieve high detection rates. Rather than represent the image structure using intensity gradients, we extract local edge features for each landmark using steerable filters. A machine learning algorithm based on AdaBoost selects a small number of critical features from a large set and yields extremely efficient classifiers. These non-linear classifiers are used, instead of the linear Mahalanobis distance, to find optimal displacements by searching along the direction perpendicular to each landmark. These features give more accurate and reliable matching between model and new images than modeling image intensity alone. Experimental results demonstrated the ability of this improved method to accurately locate edge features.
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
收录类别ISTP ; SCI
语种英语
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000223567700015
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/7988
专题脑网络组研究中心
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, SY,Zhu, LT,Jiang, TZ,et al. Active shape model segmentation using local edge structures and AdaBoost[J]. MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS,2004,3150:121-128.
APA Li, SY,Zhu, LT,Jiang, TZ,Yang, GZ,&Jiang, T.(2004).Active shape model segmentation using local edge structures and AdaBoost.MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS,3150,121-128.
MLA Li, SY,et al."Active shape model segmentation using local edge structures and AdaBoost".MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS 3150(2004):121-128.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, SY]的文章
[Zhu, LT]的文章
[Jiang, TZ]的文章
百度学术
百度学术中相似的文章
[Li, SY]的文章
[Zhu, LT]的文章
[Jiang, TZ]的文章
必应学术
必应学术中相似的文章
[Li, SY]的文章
[Zhu, LT]的文章
[Jiang, TZ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。