Joint learning of error-correcting output codes and dichotomizers from data
Zhong, Guoqiang; Huang, Kaizhu; Liu, Cheng-Lin
2012-06-01
发表期刊NEURAL COMPUTING & APPLICATIONS
卷号21期号:4页码:715-724
文章类型Article
摘要The ECOC technique is a powerful tool to learn and combine multiple binary learners for multi-class classification. It generally involves three steps: coding, dichotomizers learning, and decoding. In previous ECOC methods, the coding step and the dichotomizers learning step are usually performed independently. This simplifies the learning problem but may lead to unsatisfactory decoding results. To solve this problem, we propose a novel model for learning the ECOC matrix and dichotomizers jointly from data. We formulate the model as a nonlinear programming problem and develop an efficient alternating minimization algorithm to solve it. Specifically, for fixed ECOC matrix, our model is decomposed into a group of mutually independent quadratic programming problems; while for fixed dichotomizers, it is a difference of convex functions problem and can be easily solved using the concave--convex procedure algorithm. Our experimental results on ten data sets from the UCI machine learning repository demonstrated the advantage of our model over state-of-the-art ECOC methods.
关键词Error Correcting Output Codes (Ecoc) Dichotomizer Concave-convex Procedure (Cccp)
WOS标题词Science & Technology ; Technology
关键词[WOS]CLASSIFICATION ; DESIGN
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000304160200011
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/7994
专题模式识别国家重点实验室_模式分析与学习
作者单位Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhong, Guoqiang,Huang, Kaizhu,Liu, Cheng-Lin. Joint learning of error-correcting output codes and dichotomizers from data[J]. NEURAL COMPUTING & APPLICATIONS,2012,21(4):715-724.
APA Zhong, Guoqiang,Huang, Kaizhu,&Liu, Cheng-Lin.(2012).Joint learning of error-correcting output codes and dichotomizers from data.NEURAL COMPUTING & APPLICATIONS,21(4),715-724.
MLA Zhong, Guoqiang,et al."Joint learning of error-correcting output codes and dichotomizers from data".NEURAL COMPUTING & APPLICATIONS 21.4(2012):715-724.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhong, Guoqiang]的文章
[Huang, Kaizhu]的文章
[Liu, Cheng-Lin]的文章
百度学术
百度学术中相似的文章
[Zhong, Guoqiang]的文章
[Huang, Kaizhu]的文章
[Liu, Cheng-Lin]的文章
必应学术
必应学术中相似的文章
[Zhong, Guoqiang]的文章
[Huang, Kaizhu]的文章
[Liu, Cheng-Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。