CASIA OpenIR  > 智能感知与计算研究中心
Slow Feature Analysis for Human Action Recognition
Zhang, Zhang1; Tao, Dacheng2
2012-03-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号34期号:3页码:436-450
文章类型Article
摘要Slow Feature Analysis (SFA) extracts slowly varying features from a quickly varying input signal [1]. It has been successfully applied to modeling the visual receptive fields of the cortical neurons. Sufficient experimental results in neuroscience suggest that the temporal slowness principle is a general learning principle in visual perception. In this paper, we introduce the SFA framework to the problem of human action recognition by incorporating the discriminative information with SFA learning and considering the spatial relationship of body parts. In particular, we consider four kinds of SFA learning strategies, including the original unsupervised SFA (U-SFA), the supervised SFA (S-SFA), the discriminative SFA (D-SFA), and the spatial discriminative SFA (SD-SFA), to extract slow feature functions from a large amount of training cuboids which are obtained by random sampling in motion boundaries. Afterward, to represent action sequences, the squared first order temporal derivatives are accumulated over all transformed cuboids into one feature vector, which is termed the Accumulated Squared Derivative (ASD) feature. The ASD feature encodes the statistical distribution of slow features in an action sequence. Finally, a linear support vector machine (SVM) is trained to classify actions represented by ASD features. We conduct extensive experiments, including two sets of control experiments, two sets of large scale experiments on the KTH and Weizmann databases, and two sets of experiments on the CASIA and UT-interaction databases, to demonstrate the effectiveness of SFA for human action recognition. Experimental results suggest that the SFA-based approach 1) is able to extract useful motion patterns and improves the recognition performance, 2) requires less intermediate processing steps but achieves comparable or even better performance, and 3) has good potential to recognize complex multiperson activities.
关键词Human Action Recognition Slow Feature Analysis
WOS标题词Science & Technology ; Technology
关键词[WOS]FACE RECOGNITION ; POINTS
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000299381600002
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8003
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100864, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
推荐引用方式
GB/T 7714
Zhang, Zhang,Tao, Dacheng. Slow Feature Analysis for Human Action Recognition[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2012,34(3):436-450.
APA Zhang, Zhang,&Tao, Dacheng.(2012).Slow Feature Analysis for Human Action Recognition.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,34(3),436-450.
MLA Zhang, Zhang,et al."Slow Feature Analysis for Human Action Recognition".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 34.3(2012):436-450.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhang]的文章
[Tao, Dacheng]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhang]的文章
[Tao, Dacheng]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhang]的文章
[Tao, Dacheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。