Face Hallucination Via Weighted Adaptive Sparse Regularization
Wang, Zhongyuan1,2; Hu, Ruimin1,2; Wang, Shizheng3; Jiang, Junjun1,2
2014-05-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
卷号24期号:5页码:802-813
文章类型Article
摘要Sparse representation-based face hallucination approaches proposed so far use fixed l(1) norm penalty to capture the sparse nature of face images, and thus hardly adapt readily to the statistical variability of underlying images. Additionally, they ignore the influence of spatial distances between the test image and training basis images on optimal reconstruction coefficients. Consequently, they cannot offer a satisfactory performance in practical face hallucination applications. In this paper, we propose a weighted adaptive sparse regularization (WASR) method to promote accuracy, stability and robustness for face hallucination reconstruction, in which a distance-inducing weighted l(q) norm penalty is imposed on the solution. With the adjustment to shrinkage parameter q, the weighted l(q) penalty function enables elastic description ability in the sparse domain, leading to more conservative sparsity in an ascending order of q. In particular, WASR with an optimal q > 1 can reasonably represent the less sparse nature of noisy images and thus remarkably boosts noise robust performance in face hallucination. Various experimental results on standard face database as well as real-world images show that our proposed method outperforms state-of-the-art methods in terms of both objective metrics and visual quality.
关键词l(q) Norm Adaptive Sparse Regularization Face Hallucination Super-resolution Weighted Penalty
WOS标题词Science & Technology ; Technology
关键词[WOS]IMAGE SUPERRESOLUTION ; REPRESENTATION
收录类别SCI
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000336057400008
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8028
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Wuhan 430079, Peoples R China
2.Wuhan Univ, Sch Comp, Wuhan 430079, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhongyuan,Hu, Ruimin,Wang, Shizheng,et al. Face Hallucination Via Weighted Adaptive Sparse Regularization[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2014,24(5):802-813.
APA Wang, Zhongyuan,Hu, Ruimin,Wang, Shizheng,&Jiang, Junjun.(2014).Face Hallucination Via Weighted Adaptive Sparse Regularization.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,24(5),802-813.
MLA Wang, Zhongyuan,et al."Face Hallucination Via Weighted Adaptive Sparse Regularization".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 24.5(2014):802-813.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhongyuan]的文章
[Hu, Ruimin]的文章
[Wang, Shizheng]的文章
百度学术
百度学术中相似的文章
[Wang, Zhongyuan]的文章
[Hu, Ruimin]的文章
[Wang, Shizheng]的文章
必应学术
必应学术中相似的文章
[Wang, Zhongyuan]的文章
[Hu, Ruimin]的文章
[Wang, Shizheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。