Boosted Multifeature Learning for Cross-Domain Transfer
Yang, Xiaoshan1,2; Zhang, Tianzhu1,2; Xu, Changsheng1,2; Yang, Ming-Hsuan3; Xu CS(徐常胜)
2015
发表期刊ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
卷号11期号:3页码:35:1-18
文章类型Article
摘要Conventional learning algorithm assumes that the training data and test data share a common distribution. However, this assumption will greatly hinder the practical application of the learned model for cross-domain data analysis in multimedia. To deal with this issue, transfer learning based technology should be adopted. As a typical version of transfer learning, domain adaption has been extensively studied recently due to its theoretical value and practical interest. In this article, we propose a boosted multifeature learning (BMFL) approach to iteratively learn multiple representations within a boosting procedure for unsupervised domain adaption. The proposed BMFL method has a number of properties. (1) It reuses all instances with different weights assigned by the previous boosting iteration and avoids discarding labeled instances as in conventional methods. (2) It models the instance weight distribution effectively by considering the classification error and the domain similarity, which facilitates learning new feature representation to correct the previously misclassified instances. (3) It learns multiple different feature representations to effectively bridge the source and target domains. We evaluate the BMFL by comparing its performance on three applications: image classification, sentiment classification and spam filtering. Extensive experimental results demonstrate that the proposed BMFL algorithm performs favorably against state-of-the-art domain adaption methods.
关键词Algorithms Experimentation Performance Domain Adaptation Multifeature Boosting Denoising Auto-encoder
WOS标题词Science & Technology ; Technology
DOI10.1145/2700286
关键词[WOS]ADAPTATION
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000349852500003
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8044
专题模式识别国家重点实验室_多媒体计算与图形学
通讯作者Xu CS(徐常胜)
作者单位1.National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.China Singapore Inst Digital Media, Singapore 119613, Singapore
3.Univ Calif, Dept Elect Engn & Comp Sci, Merced, CA 95334 USA
推荐引用方式
GB/T 7714
Yang, Xiaoshan,Zhang, Tianzhu,Xu, Changsheng,et al. Boosted Multifeature Learning for Cross-Domain Transfer[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2015,11(3):35:1-18.
APA Yang, Xiaoshan,Zhang, Tianzhu,Xu, Changsheng,Yang, Ming-Hsuan,&徐常胜.(2015).Boosted Multifeature Learning for Cross-Domain Transfer.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,11(3),35:1-18.
MLA Yang, Xiaoshan,et al."Boosted Multifeature Learning for Cross-Domain Transfer".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 11.3(2015):35:1-18.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Boosted Multifeature(1139KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Xiaoshan]的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
百度学术
百度学术中相似的文章
[Yang, Xiaoshan]的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
必应学术
必应学术中相似的文章
[Yang, Xiaoshan]的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Boosted Multifeature Learning for Cross-Domain Transfer(论文).pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。