CASIA OpenIR  > 综合信息系统研究中心
A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network
Song, Jianglong1; Tang, Shihuan2; Liu, Xi1; Gao, Yibo1; Yang, Hongjun2; Lu, Peng1
2015-04-30
发表期刊PLOS ONE
卷号10期号:4
文章类型Article
摘要For a multicomponent therapy, molecular network is essential to uncover its specific mode of action from a holistic perspective. The molecular system of a Traditional Chinese Medicine (TCM) formula can be represented by a 2-class heterogeneous network (2-HN), which typically includes chemical similarities, chemical-target interactions and gene interactions. An important premise of uncovering the molecular mechanism is to identify mixed modules from complex chemical-gene heterogeneous network of a TCM formula. We thus proposed a novel method (MixMod) based on mixed modularity to detect accurate mixed modules from 2-HNs. At first, we compared MixMod with Clauset-Newman-Moore algorithm (CNM), Markov Cluster algorithm (MCL), Infomap and Louvain on benchmark 2-HNs with known module structure. Results showed that MixMod was superior to other methods when 2-HNs had promiscuous module structure. Then these methods were tested on a real drug-target network, in which 88 disease clusters were regarded as real modules. MixMod could identify the most accurate mixed modules from the drug-target 2-HN (normalized mutual information 0.62 and classification accuracy 0.4524). In the end, MixMod was applied to the 2-HN of Buchang naoxintong capsule (BNC) and detected 49 mixed modules. By using enrichment analysis, we investigated five mixed modules that contained primary constituents of BNC intestinal absorption liquid. As a matter of fact, the findings of in vitro experiments using BNC intestinal absorption liquid were found to highly accord with previous analysis. Therefore, MixMod is an effective method to detect accurate mixed modules from chemical-gene heterogeneous networks and further uncover the molecular mechanism of multicomponent therapies, especially TCM formulae.
WOS标题词Science & Technology
关键词[WOS]COMMUNITY STRUCTURE ; HERBAL FORMULAS ; PHARMACOLOGY ; ORGANIZATION ; MEDICINE ; DATABASE ; BIOLOGY ; SYSTEMS
收录类别SCI
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000353713100103
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8076
专题综合信息系统研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
2.China Acad Chinese Med Sci, Inst Chinese Mat Med, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Song, Jianglong,Tang, Shihuan,Liu, Xi,et al. A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network[J]. PLOS ONE,2015,10(4).
APA Song, Jianglong,Tang, Shihuan,Liu, Xi,Gao, Yibo,Yang, Hongjun,&Lu, Peng.(2015).A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network.PLOS ONE,10(4).
MLA Song, Jianglong,et al."A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network".PLOS ONE 10.4(2015).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Jianglong]的文章
[Tang, Shihuan]的文章
[Liu, Xi]的文章
百度学术
百度学术中相似的文章
[Song, Jianglong]的文章
[Tang, Shihuan]的文章
[Liu, Xi]的文章
必应学术
必应学术中相似的文章
[Song, Jianglong]的文章
[Tang, Shihuan]的文章
[Liu, Xi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。