GrDHP: A General Utility Function Representation for Dual Heuristic Dynamic Programming
Ni, Zhen1; He, Haibo1; Zhao, Dongbin2; Xu, Xin3; Prokhorov, Danil V.4
2015-03-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号26期号:3页码:614-627
文章类型Article
摘要A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.
关键词Adaptive Control Adaptive Dynamic Programming (Adp) Dual Heuristic Dynamic Programming (Dhp) General Utility Function Goal Representation Reinforcement Learning (Rl)
WOS标题词Science & Technology ; Technology
关键词[WOS]TIME NONLINEAR-SYSTEMS ; ADAPTIVE CRITIC DESIGNS ; ONLINE LEARNING CONTROL ; CONTROL SCHEME ; FEEDBACK-CONTROL ; POWER-SYSTEM ; GOAL REPRESENTATION ; REINFORCEMENT ; ALGORITHM ; TRACKING
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000351834400016
引用统计
被引频次:43[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8103
专题复杂系统管理与控制国家重点实验室_先进控制与自动化
作者单位1.Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Natl Univ Def Technol, Coll Mechatron & Automat, Changsha 410073, Hunan, Peoples R China
4.Toyota Res Inst NA, Toyota Tech Ctr, Ann Arbor, MI 48105 USA
推荐引用方式
GB/T 7714
Ni, Zhen,He, Haibo,Zhao, Dongbin,et al. GrDHP: A General Utility Function Representation for Dual Heuristic Dynamic Programming[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(3):614-627.
APA Ni, Zhen,He, Haibo,Zhao, Dongbin,Xu, Xin,&Prokhorov, Danil V..(2015).GrDHP: A General Utility Function Representation for Dual Heuristic Dynamic Programming.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(3),614-627.
MLA Ni, Zhen,et al."GrDHP: A General Utility Function Representation for Dual Heuristic Dynamic Programming".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.3(2015):614-627.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ni, Zhen]的文章
[He, Haibo]的文章
[Zhao, Dongbin]的文章
百度学术
百度学术中相似的文章
[Ni, Zhen]的文章
[He, Haibo]的文章
[Zhao, Dongbin]的文章
必应学术
必应学术中相似的文章
[Ni, Zhen]的文章
[He, Haibo]的文章
[Zhao, Dongbin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。