Pedestrian Detection Based on Clustered Poselet Models and Hierarchical AND-OR Grammar
Li, Bo1; Chen, Yaobin2,3; Wang, Fei-Yue1
2015-04-01
发表期刊IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷号64期号:4页码:1435-1444
文章类型Article
摘要In this paper, a novel part-based pedestrian detection algorithm is proposed for complex traffic surveillance environments. To capture posture and articulation variations of pedestrians, we define a hierarchical grammar model with the AND-OR graphical structure to represent the decomposition of pedestrians. Thus, pedestrian detection is converted to a parsing problem. Next, we propose clustered poselet models, which use the affinity propagation clustering algorithm to automatically select representative pedestrian part patterns in keypoint space. Trained clustered poselets are utilized as the terminal part models in the grammar model. Finally, after all clustered poselet activations in the input image are detected, one bottom-up inference is performed to effectively search maximum a posteriori (MAP) solutions in the grammar model. Thus, consistent poselet activations are combined into pedestrian hypotheses, and their bounding boxes are predicted. Both appearance scores and geometry constraints among pedestrian parts are considered in inference. A series of experiments is conducted on images, both from the public TUD-Pedestrian data set and collected in real traffic crossing scenarios. The experimental results demonstrate that our algorithm outperforms other successful approaches with high reliability and robustness in complex environments.
关键词And-or Graph Clustered Poselet Computer Vision Pedestrian Detection
WOS标题词Science & Technology ; Technology
关键词[WOS]PART DETECTORS ; SYSTEMS ; SEGMENTATION ; MULTIPLE ; TRACKING ; HUMANS ; SINGLE
收录类别SCI
语种英语
WOS研究方向Engineering ; Telecommunications ; Transportation
WOS类目Engineering, Electrical & Electronic ; Telecommunications ; Transportation Science & Technology
WOS记录号WOS:000353111900015
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8113
专题复杂系统管理与控制国家重点实验室_先进控制与自动化
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Indiana Univ Purdue Univ, Dept Elect & Comp Engn, Indianapolis, IN 46202 USA
3.Indiana Univ Purdue Univ, Transportat Act Safety Inst, Indianapolis, IN 46202 USA
推荐引用方式
GB/T 7714
Li, Bo,Chen, Yaobin,Wang, Fei-Yue. Pedestrian Detection Based on Clustered Poselet Models and Hierarchical AND-OR Grammar[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2015,64(4):1435-1444.
APA Li, Bo,Chen, Yaobin,&Wang, Fei-Yue.(2015).Pedestrian Detection Based on Clustered Poselet Models and Hierarchical AND-OR Grammar.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,64(4),1435-1444.
MLA Li, Bo,et al."Pedestrian Detection Based on Clustered Poselet Models and Hierarchical AND-OR Grammar".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 64.4(2015):1435-1444.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Bo]的文章
[Chen, Yaobin]的文章
[Wang, Fei-Yue]的文章
百度学术
百度学术中相似的文章
[Li, Bo]的文章
[Chen, Yaobin]的文章
[Wang, Fei-Yue]的文章
必应学术
必应学术中相似的文章
[Li, Bo]的文章
[Chen, Yaobin]的文章
[Wang, Fei-Yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。