Infinite Horizon Self-Learning Optimal Control of Nonaffine Discrete-Time Nonlinear Systems
Wei, Qinglai; Liu, Derong; Yang, Xiong
2015-04-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号26期号:4页码:866-879
文章类型Article
摘要In this paper, a novel iterative adaptive dynamic programming (ADP)-based infinite horizon self-learning optimal control algorithm, called generalized policy iteration algorithm, is developed for nonaffine discrete-time (DT) nonlinear systems. Generalized policy iteration algorithm is a general idea of interacting policy and value iteration algorithms of ADP. The developed generalized policy iteration algorithm permits an arbitrary positive semidefinite function to initialize the algorithm, where two iteration indices are used for policy improvement and policy evaluation, respectively. It is the first time that the convergence, admissibility, and optimality properties of the generalized policy iteration algorithm for DT nonlinear systems are analyzed. Neural networks are used to implement the developed algorithm. Finally, numerical examples are presented to illustrate the performance of the developed algorithm.
关键词Adaptive Critic Designs Adaptive Dynamic Programming (Adp) Approximate Dynamic Programming Generalized Policy Iteration Neural Networks (Nns) Neurodynamic Programming Nonlinear Systems Optimal Control Reinforcement Learning
WOS标题词Science & Technology ; Technology
关键词[WOS]DYNAMIC-PROGRAMMING ALGORITHM ; OPTIMAL TRACKING CONTROL ; ADAPTIVE OPTIMAL-CONTROL ; ZERO-SUM GAMES ; UNKNOWN DYNAMICS ; CONTROL SCHEME ; POLICY ITERATION ; LINEAR-SYSTEMS ; CRITIC DESIGNS ; HJB SOLUTION
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000351835900017
引用统计
被引频次:77[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8122
专题复杂系统管理与控制国家重点实验室_平行控制
作者单位Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Liu, Derong,Yang, Xiong. Infinite Horizon Self-Learning Optimal Control of Nonaffine Discrete-Time Nonlinear Systems[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(4):866-879.
APA Wei, Qinglai,Liu, Derong,&Yang, Xiong.(2015).Infinite Horizon Self-Learning Optimal Control of Nonaffine Discrete-Time Nonlinear Systems.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(4),866-879.
MLA Wei, Qinglai,et al."Infinite Horizon Self-Learning Optimal Control of Nonaffine Discrete-Time Nonlinear Systems".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.4(2015):866-879.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Infinite Horizon Sel(2408KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Qinglai]的文章
[Liu, Derong]的文章
[Yang, Xiong]的文章
百度学术
百度学术中相似的文章
[Wei, Qinglai]的文章
[Liu, Derong]的文章
[Yang, Xiong]的文章
必应学术
必应学术中相似的文章
[Wei, Qinglai]的文章
[Liu, Derong]的文章
[Yang, Xiong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Infinite Horizon Self-Learning Optimal Control of Nonaffine Discrete-Time Nonlinear Systems.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。