A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth
Fan, Xing-Rong1; Kang, Meng-Zhen2; Heuvelink, Ep3; de Reffye, Philippe4; Hu, Bao-Gang1; Kang MZ(康孟珍)
2015-09-24
发表期刊ECOLOGICAL MODELLING
卷号312页码:363-373
文章类型Article
摘要This paper proposes a novel knowledge-and-data-driven modeling (KDDM) approach for simulating plant growth that consists of two submodels. One submodel is derived from all available domain knowledge, including all known relationships from physically based or mechanistic models; the other is constructed solely from data without using any domain knowledge. In this work, a GreenLab model was adopted as the knowledge-driven (KD) submodel and the radial basis function network (RBFN) as the data-driven (DD) submodel. A tomato crop was taken as a case study on plant growth modeling. Tomato growth data sets from twelve greenhouse experiments over five years were used to calibrate and test the model. In comparison with the existing knowledge-driven model (KDM, BIC=1215.67) and data-driven model (DDM, BIC=1150.86), the proposed KDDM approach (BIC=1144.36) presented several benefits in predicting tomato yields. In particular, the KDDM approach is able to provide strong predictions of yields from different types of organs, including leaves, stems, and fruits, even when observational data on the organs are unavailable. The case study confirms that the KDDM approach inherits advantages from both the KDM and DDM approaches. Two cases of superposition and composition coupling operators in the KDDM approach are also discussed. (C) 2015 Elsevier B.V. All rights reserved.
关键词Data-driven Model Knowledge-driven Model Greenlab Knowledge-and-data-driven Model Model Integration Plant Growth Modeling
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1016/j.ecolmodel.2015.06.006
关键词[WOS]GREENLAB ; CROP ; MACHINES ; DYNAMICS ; SEASONS ; DOMAIN
收录类别SCI
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Ecology
WOS记录号WOS:000358469200033
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8885
专题模式识别国家重点实验室_多媒体计算与图形学
通讯作者Kang MZ(康孟珍)
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Wageningen Univ, Hort & Prod Physiol Grp, NL-6700 AP Wageningen, Netherlands
4.Cirad Amis, F-34398 Montpellier 5, France
推荐引用方式
GB/T 7714
Fan, Xing-Rong,Kang, Meng-Zhen,Heuvelink, Ep,et al. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth[J]. ECOLOGICAL MODELLING,2015,312:363-373.
APA Fan, Xing-Rong,Kang, Meng-Zhen,Heuvelink, Ep,de Reffye, Philippe,Hu, Bao-Gang,&康孟珍.(2015).A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth.ECOLOGICAL MODELLING,312,363-373.
MLA Fan, Xing-Rong,et al."A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth".ECOLOGICAL MODELLING 312(2015):363-373.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2014 Xing-Rong Fan A(1168KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Xing-Rong]的文章
[Kang, Meng-Zhen]的文章
[Heuvelink, Ep]的文章
百度学术
百度学术中相似的文章
[Fan, Xing-Rong]的文章
[Kang, Meng-Zhen]的文章
[Heuvelink, Ep]的文章
必应学术
必应学术中相似的文章
[Fan, Xing-Rong]的文章
[Kang, Meng-Zhen]的文章
[Heuvelink, Ep]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2014 Xing-Rong Fan A knowledge and data driven modeling approach.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。