Nonlinear neuro-optimal tracking control via stable iterative Q-learning algorithm
Wei, Qinglai1; Song, Ruizhuo2; Sun, Qiuye3; Qinglai Wei
2015-11-30
发表期刊NEUROCOMPUTING
卷号168期号:x页码:520-528
文章类型Article
摘要This paper discusses a new policy iteration Q-learning algorithm to solve the infinite horizon optimal tracking problems for a class of discrete-time nonlinear systems. The idea is to use an iterative adaptive dynamic programming (ADP) technique to construct the iterative tracking control law which makes the system state track the desired state trajectory and simultaneously minimizes the iterative Q function. Via system transformation, the optimal tracking problem is transformed into an optimal regulation problem. The policy iteration Q-learning algorithm is then developed to obtain the optimal control law for the regulation system. Initialized by an arbitrary admissible control law, the convergence property is analyzed. It is shown that the iterative Q function is monotonically non-increasing and converges to the optimal Q function. It is proven that any of the iterative control laws can stabilize the transformed nonlinear system. Two neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of policy iteration Q-learning algorithm. Finally, two simulation examples are presented to illustrate the performance of the developed algorithm. (C) 2015 Elsevier B.V. All rights reserved.
关键词Adaptive Dynamic Programming Approximate Dynamic Programming Q-learning Optimal Tracking Control Neural Networks
WOS标题词Science & Technology ; Technology
关键词[WOS]DYNAMIC-PROGRAMMING ALGORITHM ; CONTROL SCHEME ; FEEDBACK-CONTROL ; TIME-SYSTEMS ; REINFORCEMENT ; APPROXIMATION ; GAMES ; DELAY
URL查看原文
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000359165000050
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8896
专题复杂系统管理与控制国家重点实验室_平行控制
通讯作者Qinglai Wei
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
3.Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Song, Ruizhuo,Sun, Qiuye,et al. Nonlinear neuro-optimal tracking control via stable iterative Q-learning algorithm[J]. NEUROCOMPUTING,2015,168(x):520-528.
APA Wei, Qinglai,Song, Ruizhuo,Sun, Qiuye,&Qinglai Wei.(2015).Nonlinear neuro-optimal tracking control via stable iterative Q-learning algorithm.NEUROCOMPUTING,168(x),520-528.
MLA Wei, Qinglai,et al."Nonlinear neuro-optimal tracking control via stable iterative Q-learning algorithm".NEUROCOMPUTING 168.x(2015):520-528.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2015_Neurocomputing_(2222KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Qinglai]的文章
[Song, Ruizhuo]的文章
[Sun, Qiuye]的文章
百度学术
百度学术中相似的文章
[Wei, Qinglai]的文章
[Song, Ruizhuo]的文章
[Sun, Qiuye]的文章
必应学术
必应学术中相似的文章
[Wei, Qinglai]的文章
[Song, Ruizhuo]的文章
[Sun, Qiuye]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2015_Neurocomputing_Nonlinear Neuro-Optimal Tracking Control Via Stable Iterative Q-Learning Algorithm.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。