Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors
Wei, Qinglai; Liu, Derong; Qinglai Wei
2015-02-03
发表期刊NEUROCOMPUTING
卷号149期号:x页码:106-115
文章类型Article
摘要In this paper, a new infinite horizon neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems is developed. The idea is to use iterative adaptive dynamic programming (ADP) algorithm to obtain the iterative tracking control law which makes the iterative performance index function reach the optimum. When the iterative tracking control law and iterative performance index function in each iteration cannot be accurately obtained, the convergence criteria of the iterative ADP algorithm are established according to the properties with finite approximation errors. If the convergence conditions are satisfied, it shows that the iterative performance index functions can converge to a finite neighborhood of the lowest bound of all performance index functions. Properties of the finite approximation errors for the iterative ADP algorithm are also analyzed. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the iterative ADP algorithm. Convergence properties of the neural network weights are proven. Finally, simulation results are given to illustrate the performance of the developed method. (C) 2014 Elsevier B.V. All rights reserved.
关键词Adaptive Dynamic Programming Adaptive Critic Designs Approximate Dynamic Programming Value Iteration Approximation Errors Optimal Tracking Control
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2013.09.069
关键词[WOS]DYNAMIC-PROGRAMMING ALGORITHM ; ONLINE LEARNING CONTROL ; CRITIC DESIGNS ; REINFORCEMENT ; CONVERGENCE ; ITERATION ; PROOF
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000360028800015
引用统计
被引频次:40[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8958
专题复杂系统管理与控制国家重点实验室_平行控制
通讯作者Qinglai Wei
作者单位Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Liu, Derong,Qinglai Wei. Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors[J]. NEUROCOMPUTING,2015,149(x):106-115.
APA Wei, Qinglai,Liu, Derong,&Qinglai Wei.(2015).Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors.NEUROCOMPUTING,149(x),106-115.
MLA Wei, Qinglai,et al."Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors".NEUROCOMPUTING 149.x(2015):106-115.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2015_Neurocomputing_(836KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Qinglai]的文章
[Liu, Derong]的文章
[Qinglai Wei]的文章
百度学术
百度学术中相似的文章
[Wei, Qinglai]的文章
[Liu, Derong]的文章
[Qinglai Wei]的文章
必应学术
必应学术中相似的文章
[Wei, Qinglai]的文章
[Liu, Derong]的文章
[Qinglai Wei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2015_Neurocomputing_Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。