MTC: A Fast and Robust Graph-Based Transductive Learning Method
Zhang, Yan-Ming1; Huang, Kaizhu2; Geng, Guang-Gang3; Liu, Cheng-Lin1
2015-09-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号26期号:9页码:1979-1991
文章类型Article
摘要Despite the great success of graph-based transductive learning methods, most of them have serious problems in scalability and robustness. In this paper, we propose an efficient and robust graph-based transductive classification method, called minimum tree cut (MTC), which is suitable for large-scale data. Motivated from the sparse representation of graph, we approximate a graph by a spanning tree. Exploiting the simple structure, we develop a linear-time algorithm to label the tree such that the cut size of the tree is minimized This significantly improves graph-based methods, which typically have a polynomial time complexity. Moreover, we theoretically and empirically show that the performance of MTC is robust to the graph construction, overcoming another big problem of traditional graph-based methods. Extensive experiments on public data sets and applications on web-spam detection and interactive image segmentation demonstrate our method's advantages in aspect of accuracy, speed, and robustness.
关键词Graph-based Method Large-scale Manifold Learning Semisupervised Learning (Ssl) Transductive Learning (Tl)
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2014.2363679
关键词[WOS]CONSTRUCTION
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000360437300011
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8965
专题模式识别国家重点实验室_模式分析与学习
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Xian Jiaotong Liverpool Univ, Dept Elect & Elect Engn, Suzhou 215123, Peoples R China
3.Chinese Acad Sci, China Internet Network Informat Ctr, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Yan-Ming,Huang, Kaizhu,Geng, Guang-Gang,et al. MTC: A Fast and Robust Graph-Based Transductive Learning Method[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(9):1979-1991.
APA Zhang, Yan-Ming,Huang, Kaizhu,Geng, Guang-Gang,&Liu, Cheng-Lin.(2015).MTC: A Fast and Robust Graph-Based Transductive Learning Method.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(9),1979-1991.
MLA Zhang, Yan-Ming,et al."MTC: A Fast and Robust Graph-Based Transductive Learning Method".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.9(2015):1979-1991.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ymzhang-2014-tnnls-M(3026KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Yan-Ming]的文章
[Huang, Kaizhu]的文章
[Geng, Guang-Gang]的文章
百度学术
百度学术中相似的文章
[Zhang, Yan-Ming]的文章
[Huang, Kaizhu]的文章
[Geng, Guang-Gang]的文章
必应学术
必应学术中相似的文章
[Zhang, Yan-Ming]的文章
[Huang, Kaizhu]的文章
[Geng, Guang-Gang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ymzhang-2014-tnnls-MTC.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。