CASIA OpenIR  > 09年以前成果
Learning to fuse 3D+2D based face recognition at both feature and decision levels
Li, SZ; Zhao, CS; Ao, M; Lei, Z; Zhao, W; Gong, S; Tang, X
2005
发表期刊ANALYSIS AND MODELLING OF FACES AND GESTURES, PROCEEDINGS
卷号3723页码:44-54
文章类型Article
摘要2D intensity images and 3D shape models are both useful for face recognition, but in different ways. While algorithms have long been developed using 2D or 3D data, recently has seen work on combining both into multi-modal face biometrics to achieve higher performance. However, the fusion of the two modalities has mostly been at the decision level, based on scores obtained from independent 2D and 3D matchers.
WOS标题词Science & Technology ; Technology
关键词[WOS]EIGENFACES
收录类别ISTP ; SCI
语种英语
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号WOS:000233332200005
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9143
专题09年以前成果
作者单位1.Chinese Acad Sci, Inst Automat, Ctr Biometr & Secur Res, Beijing 100080, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, SZ,Zhao, CS,Ao, M,et al. Learning to fuse 3D+2D based face recognition at both feature and decision levels[J]. ANALYSIS AND MODELLING OF FACES AND GESTURES, PROCEEDINGS,2005,3723:44-54.
APA Li, SZ.,Zhao, CS.,Ao, M.,Lei, Z.,Zhao, W.,...&Tang, X.(2005).Learning to fuse 3D+2D based face recognition at both feature and decision levels.ANALYSIS AND MODELLING OF FACES AND GESTURES, PROCEEDINGS,3723,44-54.
MLA Li, SZ,et al."Learning to fuse 3D+2D based face recognition at both feature and decision levels".ANALYSIS AND MODELLING OF FACES AND GESTURES, PROCEEDINGS 3723(2005):44-54.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, SZ]的文章
[Zhao, CS]的文章
[Ao, M]的文章
百度学术
百度学术中相似的文章
[Li, SZ]的文章
[Zhao, CS]的文章
[Ao, M]的文章
必应学术
必应学术中相似的文章
[Li, SZ]的文章
[Zhao, CS]的文章
[Ao, M]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。