CASIA OpenIR  > 09年以前成果
Fist tracking using Bayesian network
Lu, P; Chen, YF; Zhang, MD; Wang, YS; Tao, J; Picard, RW
2005
发表期刊AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PROCEEDINGS
卷号3784期号:0页码:257-262
文章类型Article
摘要This paper presents a Bayesian network based multi-cue fusion method for robust and real-time fist tracking. Firstly, a new strategy, which employs the latest work in face recognition, is used to create accurate color model of the fist automatically. Secondly, color cue and motion cue are used to generate the possible position of the fist. Then, the posterior probability of each possible position is evaluated by Bayesian network, which fuses color cue and appearance cue. Finally, the fist position is approximated by the hypothesis that maximizes a posterior. Experimental results show that our algorithm is real-time and robust.
关键词Multi-cue Fusion Method
WOS标题词Science & Technology ; Technology
收录类别SCI ; ISTP
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:000234342700033
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9162
专题09年以前成果
作者单位Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Lu, P,Chen, YF,Zhang, MD,et al. Fist tracking using Bayesian network[J]. AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PROCEEDINGS,2005,3784(0):257-262.
APA Lu, P,Chen, YF,Zhang, MD,Wang, YS,Tao, J,&Picard, RW.(2005).Fist tracking using Bayesian network.AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PROCEEDINGS,3784(0),257-262.
MLA Lu, P,et al."Fist tracking using Bayesian network".AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PROCEEDINGS 3784.0(2005):257-262.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fist_Tracking_Using_(338KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, P]的文章
[Chen, YF]的文章
[Zhang, MD]的文章
百度学术
百度学术中相似的文章
[Lu, P]的文章
[Chen, YF]的文章
[Zhang, MD]的文章
必应学术
必应学术中相似的文章
[Lu, P]的文章
[Chen, YF]的文章
[Zhang, MD]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fist_Tracking_Using_Bayesian_Network.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。