CASIA OpenIR  > 09年以前成果
A new maximum margin algorithm for one-class problems and its boosting implementation
Tao, Q; Wu, GW; Wang, J
2005-07-01
发表期刊PATTERN RECOGNITION
卷号38期号:7页码:1071-1077
文章类型Article
摘要In this paper, each one-class problem is regarded as trying to estimate a function that is positive on a desired slab and negative on the complement. The main advantage of this viewpoint is that the loss function and the expected risk can be defined to ensure that the slab can contain as many samples as possible. Inspired by the nature of SVMs, the intuitive margin is also defined. As a result, a new linear optimization problem to maximize the margin and some theoretically motivated learning algorithms are obtained. Moreover, the proposed algorithms can be implemented by boosting techniques to solve nonlinear one-class classifications. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
关键词One-class Problems Outliers Statistical Learning Theory Support Vector Machines Margin Boosting
WOS标题词Science & Technology ; Technology
关键词[WOS]SUPPORT
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000228700900010
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9182
专题09年以前成果
作者单位Chinese Acad Sci, Inst Automat, Key Lab Complex Syst & Intelligence Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Tao, Q,Wu, GW,Wang, J. A new maximum margin algorithm for one-class problems and its boosting implementation[J]. PATTERN RECOGNITION,2005,38(7):1071-1077.
APA Tao, Q,Wu, GW,&Wang, J.(2005).A new maximum margin algorithm for one-class problems and its boosting implementation.PATTERN RECOGNITION,38(7),1071-1077.
MLA Tao, Q,et al."A new maximum margin algorithm for one-class problems and its boosting implementation".PATTERN RECOGNITION 38.7(2005):1071-1077.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Q]的文章
[Wu, GW]的文章
[Wang, J]的文章
百度学术
百度学术中相似的文章
[Tao, Q]的文章
[Wu, GW]的文章
[Wang, J]的文章
必应学术
必应学术中相似的文章
[Tao, Q]的文章
[Wu, GW]的文章
[Wang, J]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。