CASIA OpenIR  > 09年以前成果
Multiple similarities based kernel subspace learning for image classification
Yan, W; Liu, QS; Lu, HQ; Ma, SD; Narayanan, PJ; Nayar, SK; Shum, HY
2006
发表期刊COMPUTER VISION - ACCV 2006, PT II
卷号3852页码:244-253
文章类型Article
摘要In this paper, we propose a new method for image classification, in which matrix based kernel features are designed to capture the multiple similarities between images in different low-level visual cues. Based on the property that dot product kernel can be regarded as a similarity measure, we apply kernel functions to different low-level visual features respectively to measure the similarities between two images, and obtain a kernel feature matrix for each image. In order to deal with the problems of over fitting and numerical computation, a revised version of Two-Dimensional PCA algorithm is developed to learn intrinsic subspace of matrix features for classification. Extensive experiments on the Corel database show the advantage of the proposed method.
WOS标题词Science & Technology ; Technology
关键词[WOS]HUMAN FACES
收录类别ISTP ; SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:000235773200025
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9229
专题09年以前成果
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Yan, W,Liu, QS,Lu, HQ,et al. Multiple similarities based kernel subspace learning for image classification[J]. COMPUTER VISION - ACCV 2006, PT II,2006,3852:244-253.
APA Yan, W.,Liu, QS.,Lu, HQ.,Ma, SD.,Narayanan, PJ.,...&Shum, HY.(2006).Multiple similarities based kernel subspace learning for image classification.COMPUTER VISION - ACCV 2006, PT II,3852,244-253.
MLA Yan, W,et al."Multiple similarities based kernel subspace learning for image classification".COMPUTER VISION - ACCV 2006, PT II 3852(2006):244-253.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yan, W]的文章
[Liu, QS]的文章
[Lu, HQ]的文章
百度学术
百度学术中相似的文章
[Yan, W]的文章
[Liu, QS]的文章
[Lu, HQ]的文章
必应学术
必应学术中相似的文章
[Yan, W]的文章
[Liu, QS]的文章
[Lu, HQ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。