CASIA OpenIR  > 09年以前成果
Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images
Song, Jingjing; Zhao, Qingjie; Wang, Yuanquan; Tian, Jie; Yang, Q; Webb, G
2006
发表期刊PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS
卷号4099期号:2006页码:1242-1247
文章类型Article
摘要In this paper, we present a new and fast algorithm of fuzzy segmentation for MR image, which is corrupted by the intensity inhomogeneity. The algorithm is formulated by modifying the FFCM algorithm to incorporate a gain field, which compensate for such inhomogeneities. In each iteration, we allow the gain field transforming to a gain field image and filter it using an iterative low-pass filter, and then revert the gain field image to gain field term again for the next iteration. We also use c-means algorithm initializing the centroids to further accelerate our algorithm. Our method reduces lots of executive time and will obtain a high-quality result. The efficiency of the algorithm is demonstrated on different magnetic resonance images.
关键词Gain Field Correction Segmenting Magnetic Resonance Images C-means
WOS标题词Science & Technology ; Technology
关键词[WOS]MRI DATA ; SEGMENTATION
收录类别SCI ; ISTP
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:000240091500169
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9293
专题09年以前成果
通讯作者Tian, Jie
作者单位1.Beijing Inst Technol, Dept Comp Sci & Engn, Beijing 100081, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Song, Jingjing,Zhao, Qingjie,Wang, Yuanquan,et al. Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images[J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS,2006,4099(2006):1242-1247.
APA Song, Jingjing,Zhao, Qingjie,Wang, Yuanquan,Tian, Jie,Yang, Q,&Webb, G.(2006).Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images.PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS,4099(2006),1242-1247.
MLA Song, Jingjing,et al."Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images".PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS 4099.2006(2006):1242-1247.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
chp%3A10.1007%2F978-(208KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Jingjing]的文章
[Zhao, Qingjie]的文章
[Wang, Yuanquan]的文章
百度学术
百度学术中相似的文章
[Song, Jingjing]的文章
[Zhao, Qingjie]的文章
[Wang, Yuanquan]的文章
必应学术
必应学术中相似的文章
[Song, Jingjing]的文章
[Zhao, Qingjie]的文章
[Wang, Yuanquan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: chp%3A10.1007%2F978-3-540-36668-3_169.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。