CASIA OpenIR  > 09年以前成果
Spatially variant mixture multiscale autoregressive Modeling of SAR imagery for unsupervised segmentation
Ju, YW; Tian, Z
2006-04-01
发表期刊CHINESE JOURNAL OF ELECTRONICS
卷号15期号:2页码:359-362
文章类型Article
摘要A new and efficient Spatially variant mixture multiscale autoregressive (SVMMAR) model is presented for unsupervised segmentation of Synthetic aperture radar (SAR) imagery. Unlike previously proposed Bayesian segmentation approaches based on mixture model, which have used a single-resolution representation of the observed image, the proposed model can be used for the pyramid representation of SAR imagery. So, it is capable of not only describing spatially variant characteristics and complexity, but also characterizing and exploiting multiscale stochastic structure inherent in SAR imagery due to radar speckle. The estimation of parameters of the model is easily performed via Least square (LS) estimation and Expectation maximization (EM) algorithm. Then, the proposed algorithm yields maximum likelihood estimates of the labels themselves and results in unambiguous pixel labels. Moreover, a kind of method for selecting number of classes at a coarser scale is proposed, which reduced computation amount greatly. The advantage of our proposed segmentation approach is that it is not only fast, able to automatically estimate all the model parameters, and easy to implement, but also obviates the need for an explicit labeling rule and speckle reduction preprocessing before segmentation. Therefore, the model can be exploited for SAR Automatic target recognition (ATR). All of that are demonstrated by the experimental results.
关键词Spatially Variant Mixture Multiscale Autoregressive Model Least Square Estimation Em (Expectation Maximization) Algorithm Unsupervised Segmentation Sar (Synthetic Aperture Radar) Imagery
WOS标题词Science & Technology ; Technology
收录类别SCI
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000236935300039
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9337
专题09年以前成果
作者单位1.Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
2.Chinese Acad Sci, Natl Key Lab Pattern Recognit, Beijing 100080, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Ju, YW,Tian, Z. Spatially variant mixture multiscale autoregressive Modeling of SAR imagery for unsupervised segmentation[J]. CHINESE JOURNAL OF ELECTRONICS,2006,15(2):359-362.
APA Ju, YW,&Tian, Z.(2006).Spatially variant mixture multiscale autoregressive Modeling of SAR imagery for unsupervised segmentation.CHINESE JOURNAL OF ELECTRONICS,15(2),359-362.
MLA Ju, YW,et al."Spatially variant mixture multiscale autoregressive Modeling of SAR imagery for unsupervised segmentation".CHINESE JOURNAL OF ELECTRONICS 15.2(2006):359-362.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ju, YW]的文章
[Tian, Z]的文章
百度学术
百度学术中相似的文章
[Ju, YW]的文章
[Tian, Z]的文章
必应学术
必应学术中相似的文章
[Ju, YW]的文章
[Tian, Z]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。