CASIA OpenIR  > 09年以前成果
Learning linear PCA with convex semi-definite programming
Tao, Qing; Wu, Gao-wei; Wang, Jue
2007-10-01
发表期刊PATTERN RECOGNITION
卷号40期号:10页码:2633-2640
文章类型Article
摘要The aim of this paper is to learn a linear principal component using the nature of support vector machines (SVMs). To this end, a complete SVM-like framework of linear PCA (SVPCA) for deciding the projection direction is constructed, where new expected risk and margin are introduced. Within this framework, a new semi-definite programming problem for maximizing the margin is formulated and a new definition of support vectors is established. As a weighted case of regular PCA, our SVPCA coincides with the regular PCA if all the samples play the same part in data compression. Theoretical explanation indicates that SVPCA is based on a margin-based generalization bound and thus good prediction ability is ensured. Furthermore, the robust form of SVPCA with a interpretable parameter is achieved using the soft idea in SVMs. The great advantage lies in the fact that SVPCA is a learning algorithm without local minima because of the convexity of the semi-definite optimization problems. To validate the performance of SVPCA, several experiments are conducted and numerical results have demonstrated that their generalization ability is better than that of regular PCA. Finally, some existing problems are also discussed. (c) 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
关键词Principal Component Analysis Statistical Learning Theory Support Vector Machines Margin Maximal Margin Algorithm Semi-definite Programming Robustness
WOS标题词Science & Technology ; Technology
关键词[WOS]PRINCIPAL COMPONENT ANALYSIS ; MATRIX
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000247650000003
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9410
专题09年以前成果
作者单位1.Chinese Acad Sci, Inst Automat, Lab Complex Syst & Intelligence Sci, Beijing 100080, Peoples R China
2.New Star Res Inst Appl Tech, Hefei 230031, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Div Intelligent Software Syst, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Tao, Qing,Wu, Gao-wei,Wang, Jue. Learning linear PCA with convex semi-definite programming[J]. PATTERN RECOGNITION,2007,40(10):2633-2640.
APA Tao, Qing,Wu, Gao-wei,&Wang, Jue.(2007).Learning linear PCA with convex semi-definite programming.PATTERN RECOGNITION,40(10),2633-2640.
MLA Tao, Qing,et al."Learning linear PCA with convex semi-definite programming".PATTERN RECOGNITION 40.10(2007):2633-2640.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Qing]的文章
[Wu, Gao-wei]的文章
[Wang, Jue]的文章
百度学术
百度学术中相似的文章
[Tao, Qing]的文章
[Wu, Gao-wei]的文章
[Wang, Jue]的文章
必应学术
必应学术中相似的文章
[Tao, Qing]的文章
[Wu, Gao-wei]的文章
[Wang, Jue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。