CASIA OpenIR  > 09年以前成果
Off-line handwritten Chinese character recognition with nonlinear pre-classification
Zen, LX; Dai, RW; Tan, T; Shi, YC; Gao, W
2000
发表期刊ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS
卷号1948页码:473-479
文章类型Article
摘要In this paper, we describe a new Chinese character recognition system, in which neural networks are employed as a nonlinear pre-classifier to pre-classify similar Chinese characters, and an algorithm of clustering called Association Class Grouping algorithm (ACG) is hired to cluster similar Chinese characters. In our system, feature of contour direction is extracted to form a Bayesian classifier. Experiments have been conducted to recognize 3,755 Chinese Characters. The recognition rate is about 92%.
关键词Chinese Character Recognition Association Class Grouping Neural Network Feature Of Contour Direction Bayesian Classifier
WOS标题词Science & Technology ; Technology
收录类别ISTP ; SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:000174117200062
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9797
专题09年以前成果
作者单位Chinese Acad Sci, Inst Automat, AI Lab, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zen, LX,Dai, RW,Tan, T,et al. Off-line handwritten Chinese character recognition with nonlinear pre-classification[J]. ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS,2000,1948:473-479.
APA Zen, LX,Dai, RW,Tan, T,Shi, YC,&Gao, W.(2000).Off-line handwritten Chinese character recognition with nonlinear pre-classification.ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS,1948,473-479.
MLA Zen, LX,et al."Off-line handwritten Chinese character recognition with nonlinear pre-classification".ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS 1948(2000):473-479.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zen, LX]的文章
[Dai, RW]的文章
[Tan, T]的文章
百度学术
百度学术中相似的文章
[Zen, LX]的文章
[Dai, RW]的文章
[Tan, T]的文章
必应学术
必应学术中相似的文章
[Zen, LX]的文章
[Dai, RW]的文章
[Tan, T]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。