CASIA OpenIR  > 09年以前成果
Reduction algorithms based on discernibility matrix: The ordered attributes method
Wang, J; Wang, J
2001-11-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
卷号16期号:6页码:489-504
文章类型Article
摘要In this paper, we present reduction algorithms based on the principle of Skowron's discernibility matrix - the ordered attributes method. The completeness of the algorithms for Pawlak reduct and the uniqueness for a given order of the attributes are proved. Since a discernibility matrix requires the size of the memory of \U \ (2), U is a universe of objects, it would be impossible to apply these algorithms directly to a massive object set. In order to solve the problem, a so-called quasi-discernibility matrix and two reduction algorithms are proposed. Although the proposed algorithms are incomplete for Pawlak reduct, their optimal paradigms ensure the completeness as long as they satisfy some conditions. Finally, we consider the problem on the reduction of distributive object sets.
关键词Rough Set Theory Principle Of Discernibility Matrix Inductive Machine Learning
WOS标题词Science & Technology ; Technology
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000172539500001
引用统计
被引频次:121[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9816
专题09年以前成果
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
2.Chinese Acad Sci, Inst Software, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, J,Wang, J. Reduction algorithms based on discernibility matrix: The ordered attributes method[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2001,16(6):489-504.
APA Wang, J,&Wang, J.(2001).Reduction algorithms based on discernibility matrix: The ordered attributes method.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,16(6),489-504.
MLA Wang, J,et al."Reduction algorithms based on discernibility matrix: The ordered attributes method".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 16.6(2001):489-504.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, J]的文章
[Wang, J]的文章
百度学术
百度学术中相似的文章
[Wang, J]的文章
[Wang, J]的文章
必应学术
必应学术中相似的文章
[Wang, J]的文章
[Wang, J]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。