CASIA OpenIR  > 09年以前成果
Affine invariant classification and retrieval of texture images
Zhang, JG; Tan, TN
2003-03-01
发表期刊PATTERN RECOGNITION
卷号36期号:3页码:657-664
文章类型Article
摘要In this paper, we propose a new method of extracting affine invariant texture signatures for content-based affine invariant image retrieval (CBAIR). The algorithm discussed in this paper exploits the spectral signatures of texture images. Based on spectral representation of affine transform, anisotropic scale invariant signatures of orientation spectrum distributions are extracted. Peaks distribution vector (PDV) obtained from signature distributions captures texture properties invariant to affine transform. The PDV is used to measure the similarity between textures. Extensive experimental results are included to demonstrate the performance of the method in texture classification and CBAIR. (C) 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
关键词Affine Invariants Texture Signature Invariant Retrieval Invariant Texture Analysis Texture Spectrum
WOS标题词Science & Technology ; Technology
关键词[WOS]FEATURES
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000179732400007
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9905
专题09年以前成果
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhang, JG,Tan, TN. Affine invariant classification and retrieval of texture images[J]. PATTERN RECOGNITION,2003,36(3):657-664.
APA Zhang, JG,&Tan, TN.(2003).Affine invariant classification and retrieval of texture images.PATTERN RECOGNITION,36(3),657-664.
MLA Zhang, JG,et al."Affine invariant classification and retrieval of texture images".PATTERN RECOGNITION 36.3(2003):657-664.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, JG]的文章
[Tan, TN]的文章
百度学术
百度学术中相似的文章
[Zhang, JG]的文章
[Tan, TN]的文章
必应学术
必应学术中相似的文章
[Zhang, JG]的文章
[Tan, TN]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。